Do you want to publish a course? Click here

Generation of exchange magnons in thin ferromagnetic films by ultrashort acoustic pulses

86   0   0.0 ( 0 )
 Added by Vasily Temnov V.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate generation of exchange magnons by ultrashort, picosecond acoustic pulses propagating through ferromagnetic thin films. Using the Landau-Lifshitz-Gilbert equations we derive the dispersion relation for exchange magnons for an external magnetic field tilted with respect to the film normal. Decomposing the solution in a series of standing spin wave modes, we derive a system of ordinary differential equations and driven harmonic oscillator equations describing the dynamics of individual magnon mode. The external magnetoelastic driving force is given by the time-dependent spatial Fourier components of acoustic strain pulses inside the layer. Dependencies of the magnon excitation efficiencies on the duration of the acoustic pulses and the external magnetic field highlight the role of acoustic bandwidth and phonon-magnon phase matching. Our simulations for ferromagnetic nickel evidence the possibility of ultrafast magneto-acoustic excitation of exchange magnons within the bandwidth of acoustic pulses in thin samples under conditions readily obtained in femtosecond pump-probe experiments.



rate research

Read More

In magnetic topological phases of matter, the quantum anomalous Hall (QAH) effect is an emergent phenomenon driven by ferromagnetic doping, magnetic proximity effects and strain engineering. The realization of QAH states with multiple dissipationless edge and surface conduction channels defined by a Chern number $mathcal{C}geq1$ was foreseen for the ferromagnetically ordered SnTe class of topological crystalline insulators (TCIs). From magnetotransport measurements on Sn$_{1-x}$Mn$_{x}$Te ($0.00leq{x}leq{0.08}$)(111) epitaxial thin films grown by molecular beam epitaxy on BaF$_{2}$ substrates, hole mediated ferromagnetism is observed in samples with $xgeq0.06$ and the highest $T_mathrm{c}sim7.5,mathrm{K}$ is inferred from an anomalous Hall behavior in Sn$_{0.92}$Mn$_{0.08}$Te. The sizable anomalous Hall angle $sim$0.3 obtained for Sn$_{0.92}$Mn$_{0.08}$Te is one of the greatest reported for magnetic topological materials. The ferromagnetic ordering with perpendicular magnetic anisotropy, complemented by the inception of anomalous Hall effect in the Sn$_{1-x}$Mn$_{x}$Te layers for a thickness commensurate with the decay length of the top and bottom surface states, points at Sn$_{1-x}$Mn$_{x}$Te as a preferential platform for the realization of QAH states in ferromagnetic TCIs.
We present an extensive experimental and theoretical study of surface acoustic wave-driven ferromagnetic resonance. In a first modeling approach based on the Landau-Lifshitz-Gilbert equation, we derive expressions for the magnetization dynamics upon magnetoelastic driving that are used to calculate the absorbed microwave power upon magnetic resonance as well as the spin current density generated by the precessing magnetization in the vicinity of a ferromagnet/normal metal interface. In a second modeling approach, we deal with the backaction of the magnetization dynamics on the elastic wave by solving the elastic wave equation and the Landau-Lifshitz-Gilbert equation selfconsistently, obtaining analytical solutions for the acoustic wave phase shift and attenuation. We compare both modeling approaches with the complex forward transmission of a LiNbO$_3$/Ni surface acoustic wave hybrid device recorded experimentally as a function of the external magnetic field orientation and magnitude, rotating the field within three different planes and employing three different surface acoustic wave frequencies. We find quantitative agreement of the experimentally observed power absorption and surface acoustic wave phase shift with our modeling predictions using one set of parameters for all field configurations and frequencies.
The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering a special type of periodic surface shape structure. Similar effects can be achieved by a significant surface roughness in the film. We show that in general the anisotropy can point in an arbitrary direction depending on the surface curvature. We provide simple examples of these periodic surface structures to demonstrate how to engineer particular anisotropies in the film.
Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excited at one end of the magnetic strip can propagate in the form of a traveling wave when the nanostrip axis aligns with the magnetic easy-axis. A sizable threshold is observed in the driving current density or the torque to overcome the unfavorable anisotropy as expected. The generated spin waves are found to travel over a long distance while the angle of rotation undergoes continuous decay in the presence of non-zero damping. The oscillation frequency is tunable via the strength of the spin-orbit torque, reaching the THz regime. Other key characteristics of the spin waves such as the phase and the chirality can also be modulated actively. The simulation results further indicate the possibility of wave-like superposition between the excited spin oscillations, illustrating its application as an efficient source of spin-wave signals for information processing.
To stabilize the non-trivial spin textures, e.g., skyrmions or chiral domain walls in ultrathin magnetic films, an additional degree of freedom such as the interfacial Dzyaloshinskii-Moriya interaction (IDMI) must be induced by the strong spin-orbit coupling (SOC) of a stacked heavy metal layer. However, advanced approaches to simultaneously control IDMI and perpendicular magnetic anisotropy (PMA) are needed for future spin-orbitronic device implementations. Here, we show an effect of atomic-scale surface modulation on the magnetic properties and IDMI in ultrathin films composed of 5d heavy metal/ferromagnet/4d(5d) heavy metal or oxide interfaces, such as Pt/CoFeSiB/Ru, Pt/CoFeSiB/Ta, and Pt/CoFeSiB/MgO. The maximum IDMI value corresponds to the correlated roughness of the bottom and top interfaces of the ferromagnetic layer. The proposed approach for significant enhancement of PMA and IDMI through the interface roughness engineering at the atomic scale offers a powerful tool for the development of the spin-orbitronic devices with the precise and reliable controllability of their functionality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا