Do you want to publish a course? Click here

Conductance of a molecular junction mediated by unconventional metal-induced gap states

346   0   0.0 ( 0 )
 Added by Giorgos Fagas
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The conductance of a molecular junction is commonly determined by either charge-transfer-doping, where alignment of the Fermi energy to the molecular levels is achieved, or tunnelling through the tails of molecular resonances within the highest-occupied and lowest-unoccupied molecular-orbital gap. Here, we present an alternative mechanism where electron transport is dominated by electrode surface states. They give rise to metallization of the molecular bridge and additional, pronounced conductance resonances allowing for substantial tailoring of its electronic properties via, e.g. a gate voltage. This is demonstrated in a field-effect geometry of a fullerene-bridge between two metallic carbon nanotubes.

rate research

Read More

We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance, of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the surface states allowed in a thin region near the interface. Our detailed calculations demonstrate that the interfacial thermal conductance across Pb/Pt/Al/Au-diamond interfaces are only slightly different among these metals, and reproduce well the experimental results of the interfacial thermal conductance across metal-diamond interfaces observed by Stoner et al. [Phys. Rev. Lett. 68, 1563 (1992)] and most recently by Hohensee et al. [Nature Commun. 6, 6578 (2015)].
Three-terminal superconductor (S) - normal metal (N) - superconductor (S) Josephson junctions are investigated. In a geometry where a T-shape normal metal is connected to three superconducting reservoirs, new sub-gap structures appear in the differential resistance for specific combinations of the superconductor chemical potentials. Those correspond to a correlated motion of Cooper pairs within the device that persist well above the Thouless energy and is consistent with the prediction of quartets formed by two entangled Cooper pairs. A simplified nonequilibrium Keldysh Greens function calculation is presented that supports this interpretation.
Understanding the properties of electronic transport across metal-molecule interfaces is of central importance for controlling a large variety of molecular-based devices such as organic light emitting diodes, nanoscale organic spin-valves and single-molecule switches. One of the primary experimental methods to reveal the mechanisms behind electronic transport through metal-molecule interfaces is the study of conductance as a function of molecule length in molecular junctions. Previous studies focused on transport governed either by tunneling or hopping, both at low conductance. However, the upper limit of conductance across molecular junctions has not been explored, despite the great potential for efficient information transfer, charge injection and recombination processes. Here, we study the conductance properties of highly transmitting metal-molecule-metal interfaces, using a series of single-molecule junctions based on oligoacenes with increasing length. We find that the conductance saturates at an upper limit where it is independent of molecule length. Furthermore, we show that this upper limit can be controlled by the character of the orbital hybridization at the metal-molecule interface. Using two prototype systems, in which the molecules are contacted by either Ag or Pt electrodes, we reveal two different origins for the saturation of conductance. In the case of Ag-based molecular junctions, the conductance saturation is ascribed to a competition between energy level alignment and level broadening, while in the case of Pt-based junctions, the saturation is attributed to a band-like transport. The results are explained by an intuitive model, backed by ab-initio transport calculations. Our findings shed light on the mechanisms that constrain the conductance at the high transmission limit, providing guiding principles for the design of highly conductive metal-molecule interfaces.
We present a comprehensive study of the properties of the off-resonant conductance spectrum in oligomer nanojunctions between graphitic electrodes. By employing first-principle-based methods and the Landauer approach of quantum transport, we identify how the electronic structure of the molecular junction components is reflected in electron transport across such systems. For virtually all energies within the conduction gap of the corresponding idealised polymer chain, we show that: a) the inverse decay length of the tunnelling conductance is intrinsically defined by the complex-band structure of the molecular wire despite ultrashort oligomer lengths of few monomer units, and b) the contact conductance crucially depends on both the local density of states on the metal side and the realised interfacial contact.
157 - Gang Wu , Jinming Dong 2007
The vibrational modes of some single wall carbon nanotube (SWNT) intramolecular junctions (IMJs) have been calculated using the newest Brenner reactive empirical bond order (REBO) potential, based upon which their nonresonant Raman spectra have been further calculated using the empirical bond polarizability model. It is found that the Raman peaks induced by pentagon defects lie out of the $G$-band of the SWNTs, so the high-frequency part of the Raman spectra of the SWNT IMJs can be used to determine experimentally their detailed geometrical structures. Also, the intensity of the Raman spectra has a close relation with the number of pentagon defects in the SWNT IMJs. Following the Descartes-Euler Polyhedral Formula (DEPF), the number of heptagon defects in the SWNT IMJs can also be determined. The first-principle calculations are also performed, verifying the results obtained by the REBO potential. The $G$ band width of the SWNT IMJ can reflect the length of its transition region between the pentagon and heptagon rings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا