Do you want to publish a course? Click here

First-principles investigation of graphene fluoride and graphane

150   0   0.0 ( 0 )
 Added by Ortwin Leenaerts
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A new configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.



rate research

Read More

The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp3 bonded derivatives of graphene have different phonon dispersion relations and phonon density of states as expected from the different masses associated with the attached atoms fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds.
256 - L. Reatto , M. Nava , D.E. Galli 2012
The discovery of fullerenes has stimulated extensive exploration of the resulting behavior of adsorbed films. Our study addresses the planar substrates graphene-fluoride (GF) and graphane (GH) in comparison to graphene. We present initial results concerning the potential energy, energy bands and low density behavior of 4He and 3He films on such different surfaces. For example, while graphene presents an adsorption potential that is qualitatively similar to that on graphite, GF and GH yield potentials with different symmetry, a number of adsorption sites double that on graphene/graphite and a larger corrugation for the adatom. In the case of GF, the lowest energy band width is similar to that on graphite but the He atom has a significantly larger effective mass and the adsorption energy is about three time that on graphite. Implications concerning the monolayer phase diagram of 4He are explored with the exact path integral ground state method. A commensurate ordered state similar to the sqrt{3} x sqrt{3} R30^o state on graphite is found the be unstable both on GF and on GH. The ground states of submonolayer 4He on both GF and GH are superfluids with a Bose Einstein condensate fraction of about 10%.
We propose, on the basis of our first principles density functional based calculations, a new isomer of graphane, in which the C-H bonds of a hexagon alternate in 3-up, 3-down fashion on either side of the sheet. This 2D puckered structure called stirrup has got a comparable stability with the previously discovered chair and boat conformers of graphane. The physico-chemical properties of this third conformer are found to be similar to the other two conformers of graphane with an insulating direct band gap of 3.1 eV at the {Gamma} point. Any other alternative hydrogenation of the graphene sheet disrupts its symmetric puckered geometry and turns out to be energetically less favorable.
Electronic and magnetic properties of Ga$_{1-x}$Mn$_{x}$As, obtained from first-principles calculations employing the hybrid HSE06 functional, are presented for $x=6.25%$ and $12.5%$ under pressures ranging from 0 to 15 GPa. In agreement with photoemission experiments at ambient pressure, we find for $x=6.25%$ that non-hybridized Mn-3$d$ levels and Mn-induced states reside about 5 and 0.4 eV below the Fermi energy, respectively. For elevated pressures, the Mn-3$d$ levels, Mn-induced states, and the Fermi level shift towards higher energies, however, the position of the Mn-induced states relative to the Fermi energy remains constant due to hybridization of the Mn-3$d$ levels with the valence As-4$p$ orbitals. We also evaluate, employing Monte Carlo simulations, the Curie temperature ($T_{{rm C}}$). At zero pressure, we obtain $T_{{rm C}}=181$K, whereas the pressure-induced changes in $T_{{rm C}}$ are d$T_{{rm C}}$/d$p=+4.3$K/GPa for $x=12.5%$ and an estimated value of d$T_{{rm C}}$/d$papprox+2.2$K/GPa for $x=6.25%$ under pressures up to 6 GPa. The determined values of d$T_{{rm C}}$/d$p$ compare favorably with d$T_{{rm C}}$/d$p=+$(2-3) K/GPa at $pleq1.2$GPa found experimentally and estimated within the $p$-$d$ Zener model for Ga$_{0.93}$Mn$_{0.07}$As in the regime where hole localization effects are of minor importance [M. Gryglas-Borysiewicz $et$ $al$., Phys. Rev. B ${bf 82}$, 153204 (2010)].
The effect of orbital degrees of freedom on the exchange interactions in the spin-1 quasi-one-dimensional antiferromagnet CaV2O4 is systematically studied. For this purpose a realistic low-energy model with the parameters derived from the first-principles calculations is constructed. The exchange interactions are calculated using both the theory of infinitesimal spin rotations near the mean-field ground state and the superexchange model, which provide a consistent description. The obtained behaviour of exchange interactions substantially differs from the previously proposed phenomenological picture based on the magnetic measurements and structural considerations, namely: (i) Despite quasi-one-dimensional character of the crystal structure, consisting of the zigzag chains of edge-sharing VO6 octahedra, the electronic structure is essentially three-dimensional, that leads to finite interactions between the chains; (ii) The exchange interactions along the legs of the chains appear to dominate; and (iii) There is a substantial difference of exchange interactions in two crystallographically inequivalent chains. The combination of these three factors successfully reproduces the behaviour of experimental magnetic susceptibility.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا