Do you want to publish a course? Click here

Vibrational properties of graphene fluoride and graphane

133   0   0.0 ( 0 )
 Added by Hartwin Peelaers
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The vibrational properties of graphene fluoride and graphane are studied using ab initio calculations. We find that both sp3 bonded derivatives of graphene have different phonon dispersion relations and phonon density of states as expected from the different masses associated with the attached atoms fluorine and hydrogen, respectively. These differences manifest themselves in the predicted temperature behavior of the constant-volume specific heat of both compounds.



rate research

Read More

Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A new configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
273 - L. Reatto , M. Nava , D.E. Galli 2012
The discovery of fullerenes has stimulated extensive exploration of the resulting behavior of adsorbed films. Our study addresses the planar substrates graphene-fluoride (GF) and graphane (GH) in comparison to graphene. We present initial results concerning the potential energy, energy bands and low density behavior of 4He and 3He films on such different surfaces. For example, while graphene presents an adsorption potential that is qualitatively similar to that on graphite, GF and GH yield potentials with different symmetry, a number of adsorption sites double that on graphene/graphite and a larger corrugation for the adatom. In the case of GF, the lowest energy band width is similar to that on graphite but the He atom has a significantly larger effective mass and the adsorption energy is about three time that on graphite. Implications concerning the monolayer phase diagram of 4He are explored with the exact path integral ground state method. A commensurate ordered state similar to the sqrt{3} x sqrt{3} R30^o state on graphite is found the be unstable both on GF and on GH. The ground states of submonolayer 4He on both GF and GH are superfluids with a Bose Einstein condensate fraction of about 10%.
Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Advanced Photon Source, using the method of nuclear resonant inelastic X-ray scattering, and the latter with the direct method [K. Parlinski et al., Phys. Rev. Lett. {78, 4063 (1997)]. The characteristic features of phonon DOS, which differentiate one phase from the other, were revealed and successfully reproduced by the theory. Various data pertinent to the dynamics such as Lamb-Mossbauer factor, f, kinetic energy per atom, E_k, and the mean force constant, D, were directly derived from the experiment and the theoretical calculations, while vibrational specific heat at constant volume, C_V, and vibrational entropy, S were calculated using the Fe-partial DOS. Using the values of f and C_V, we determined values for Debye temperatures, T_D. An excellent agreement for some quantities derived from experiment and first-principles theory, like C_V and quite good one for others like D and S was obtained.
Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the ground state properties satisfactorily. Under pressure PaN is found to undergo a structural transition from NaCl to the R-3m structure near 58 GPa. The high pressure behavior of the acoustic phonon branch along the (1,0,0) and (1,1,0) directions, and the C44 elastic constant are anomalous, which signals the structural transition. With GGA exchange-correlation, a topological transition in the charge density occurs near the structural transition which may be regarded as a quantum phase transition, where the order parameter obeys a mean field scaling law. However, the topological transition is absent when other exchange-correlation functionals are invoked (local density approximation (LDA) and hybrid functional). Therefore, this constitutes an example of GGA and LDA leading to qualitatively different predictions, and it is of great interest to examine experimentally whether this topological transition occurs.
We have measured the specific heat of zincblende ZnS for several isotopic compositions and over a broad temperature range (3 to 1100 K). We have compared these results with calculations based on ab initio electronic band structures, performed using both LDA and GGA exchange- correlation functionals. We have compared the lattice dynamics obtained in this manner with experimental data and have calculated the one-phonon and two-phonon densities of states. We have also calculated mode Grueneisen parameters at a number of high symmetry points of the Brillouin zone. The electronic part of our calculations has been used to investigate the effect of the 3d core electrons of zinc on the spin-orbit splitting of the top valence bands. The effect of these core electrons on the band structure of the rock salt modification of ZnS is also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا