Do you want to publish a course? Click here

The third conformer of graphane: A first principles DFT based study

126   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose, on the basis of our first principles density functional based calculations, a new isomer of graphane, in which the C-H bonds of a hexagon alternate in 3-up, 3-down fashion on either side of the sheet. This 2D puckered structure called stirrup has got a comparable stability with the previously discovered chair and boat conformers of graphane. The physico-chemical properties of this third conformer are found to be similar to the other two conformers of graphane with an insulating direct band gap of 3.1 eV at the {Gamma} point. Any other alternative hydrogenation of the graphene sheet disrupts its symmetric puckered geometry and turns out to be energetically less favorable.



rate research

Read More

Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various configurations. Large differences between graphane and graphene fluoride are found that are caused by the presence of charges on the fluorine atoms. A new configuration that is more stable than the boat configuration is predicted for graphene fluoride. We also perform GW calculations for the electronic band gap of both graphene derivatives. These band gaps and also the calculated Youngs moduli are at variance with available experimental data. This might indicate that the experimental samples contain a large number of defects or are only partially covered with H or F.
Antiferromagnetic spintronics is an on-going growing field of research. Employing both standard density functional theory and the $GW$ approximation within the framework of the FLAPW method, we study the electronic and magnetic properties of seven potential antiferromagnetic semiconducting Heusler compounds with 18 (or 28 when Zn is present) valence electrons per unit cell. We show that in these compounds G-type antiferromagnetism is the ground state and that they are all either emiconductors (Cr$_2$ScP, Cr$_2$TiZn, V$_2$ScP, V$_2$TiSi, and V$_3$Al) or semimetals (Mn$_2$MgZn and Mn$_2$NaAl). The many-body corrections have a minimal effect on the electronic band structure with respect to the standard electronic structure calculations.
We present a first-principles investigation of the structural, electronic, and magnetic properties of pyrolusite ($beta$-MnO$_2$) using conventional and extended Hubbard-corrected density-functional theory (DFT+$U$ and DFT+$U$+$V$). The onsite $U$ and intersite $V$ Hubbard parameters are computed using linear-response theory in the framework of density-functional perturbation theory. We show that while the inclusion of the onsite $U$ is crucial to describe the localized nature of the Mn($3d$) states, the intersite $V$ is key to capture accurately the strong hybridization between neighboring Mn($3d$) and O($2p$) states. In this framework, we stabilize the simplified collinear antiferromagnetic (AFM) ordering (suggested by the Goodenough-Kanamori rule) that is commonly used as an approximation to the experimentally-observed noncollinear screw-type spiral magnetic ordering. A detailed investigation of the ferromagnetic and of other three collinear AFM spin configurations is also presented. The findings from Hubbard-corrected DFT are discussed using two kinds of Hubbard manifolds - nonorthogonalized and orthogonalized atomic orbitals - showing that special attention must be given to the choice of the Hubbard projectors, with orthogonalized manifolds providing more accurate results than nonorthogonalized ones within DFT+$U$+$V$. This work paves the way for future studies of complex transition-metal compounds containing strongly localized electrons in the presence of pronounced covalent interactions.
Utilizing the strengths of nitrogen doped graphene quantum dot (N-GQD) as a substrate, here in, we have shown that one can stabilize the catalytically more active planar Au 20 (P-Au 20 ) compared to the thermodynamically more stable tetrahedral structure (T-Au 20 ) on an N-GQD. Clearly, this simple route avoids the usage of traditional transition metal oxide substrates which have been suggested and used for stabilizing the planar structure for a long time. Considering the experimental success in the synthesis of N-GQDs and in the stabilization of Au nanoparticles on N-doped graphene, we expect our proposed method to stabilize planar structure will be realized experimentally and will be useful for industrial level applications.
Recent studies on excitons in two-dimensional materials have been widely conducted for their potential usages for novel electronic and optical devices. Especially, sophisticated manipulation techniques of quantum degrees of freedom of excitons are demanded. In this paper we propose a technique of forming an optical dipole trap for excitons in graphane, a two-dimensional wide gap semiconductor, based on first principles calculations. We develop a first principles method to evaluate the exciton transition dipole matrix and combine it with the density functional theory and GW+BSE calculations. We reveal that in graphane the huge exciton binding energy and the large dipole moments of Wannier-like excitons enable us to induce the dipole trap of the order of meV depth and $mu$m width. This work opens a new way to control light-exciton interacting systems based on a newly developed numerically robust ab initio calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا