Do you want to publish a course? Click here

Enskog Theory for Polydisperse Granular Mixtures. III. Comparison of dense and dilute transport coefficients and equations of state for a binary mixture

103   0   0.0 ( 0 )
 Added by Vicente Garzo
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The objective of this study is to assess the impact of a dense-phase treatment on the hydrodynamic description of granular, binary mixtures relative to a previous dilute-phase treatment. Two theories were considered for this purpose. The first, proposed by Garzo and Dufty (GD) [Phys. Fluids {bf 14}, 146 (2002)], is based on the Boltzmann equation which does not incorporate finite-volume effects, thereby limiting its use to dilute flows. The second, proposed by Garzo, Hrenya and Dufty (GHD) [Phys. Rev. E {bf 76}, 31303 and 031304 (2007)], is derived from the Enskog equation which does account for finite-volume effects; accordingly this theory can be applied to moderately dense systems as well. To demonstrate the significance of the dense-phase treatment relative to its dilute counterpart, the ratio of dense (GHD) to dilute (GD) predictions of all relevant transport coefficients and equations of state are plotted over a range of physical parameters (volume fraction, coefficients of restitution, material density ratio, diameter ratio, and mixture composition). These plots reveal the deviation between the two treatments, which can become quite large ($>$100%) even at moderate values of the physical parameters. Such information will be useful when choosing which theory is most applicable to a given situation, since the dilute theory offers relative simplicity and the dense theory offers improved accuracy. It is also important to note that several corrections to original GHD expressions are presented here in the form of a complete, self-contained set of relevant equations.



rate research

Read More

The Navier--Stokes transport coefficients of multicomponent granular suspensions at moderate densities are obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of solid particles where the influence of the interstitial gas on grains is via a viscous drag force plus a stochastic Langevin-like term defined in terms of a background temperature. In the absence of spatial gradients, it is shown first that the system reaches a homogeneous steady state where the energy lost by inelastic collisions and viscous friction is compensated for by the energy injected by the stochastic force. Once the homogeneous steady state is characterized, a emph{normal} solution to the set of Enskog equations is obtained by means of the Chapman--Enskog expansion around the emph{local} version of the homogeneous state. To first-order in spatial gradients, the Chapman--Enskog solution allows us to identify the Navier--Stokes transport coefficients associated with the mass, momentum, and heat fluxes. In addition, the first-order contributions to the partial temperatures and the cooling rate are also calculated. Explicit forms for the diffusion coefficients, the shear and bulk viscosities, and the first-order contributions to the partial temperatures and the cooling rate are obtained in steady-state conditions by retaining the leading terms in a Sonine polynomial expansion. The results show that the dependence of the transport coefficients on inelasticity is clearly different from that found in its granular counterpart (no gas phase). The present work extends previous theoretical results for emph{dilute} multicomponent granular suspensions [Khalil and Garzo, Phys. Rev. E textbf{88}, 052201 (2013)] to higher densities.
The Chapman--Enskog solution to the Enskog kinetic equation of polydisperse granular mixtures is revisited to determine the first-order contributions $varpi_i$ to the partial temperatures. As expected, these quantities (which were neglected in previous attempts) are given in terms of the solution to a set of coupled integro-differential equations analogous to those for elastic collisions. The solubility condition for this set of equations is confirmed and the coefficients $varpi_i$ are calculated by using the leading terms in a Sonine polynomial expansion. These coefficients are given as explicit functions of the sizes, masses, composition, density, and coefficients of restitution of the mixture. Within the context of small gradients, the results apply for arbitrary degree of inelasticity and are not restricted to specific values of the parameters of the mixture. In the case of elastic collisions, previous expressions of $varpi_i$ for ordinary binary mixtures are recovered. Finally, the impact of the first-order coefficients $varpi_i$ on the bulk viscosity $eta_text{b}$ and the first-order contribution $zeta^{(1)}$ to the cooling rate is assessed. It is shown that the effect of $varpi_i$ on $eta_text{b}$ and $zeta^{(1)}$ is not negligible, specially for disparate mass ratios and strong inelasticity.
214 - Vicente Garzo 2007
Many features of granular media can be modelled as a fluid of hard spheres with {em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental basis for the derivation of the hydrodynamic equations and explicit expressions for the transport coefficients appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary collisions. The goal of this chapter is to give an overview of the recent advances made for binary granular gases by using kinetic theory tools. Some of the results presented here cover aspects such as transport properties, energy nonequipartition, instabilities, segregation or mixing, non-Newtonian behavior, .... In addition, comparison of the analytical results with those obtained from Monte Carlo and molecular dynamics simulations is also carried out, showing the reliability of kinetic theory to describe granular flows even for strong dissipation.
185 - Vicente Garzo , Ricardo Brito , 2020
The Navier--Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equation is obtained via the Chapman--Enskog method for states near the local version of the homogeneous time-dependent state. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. As expected, they are given in terms of the solutions of a set of coupled linear integral equations. In addition, in contrast to previous results obtained for low-density granular mixtures, there are also nonzero contributions to the first-order approximations to the partial temperatures $T_i^{(1)}$ and the cooling rate $zeta^{(1)}$. Explicit forms for the diffusion transport coefficients, the shear viscosity coefficient, and the quantities $T_i^{(1)}$ and $zeta^{(1)}$ are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. The above transport coefficients are given in terms of the coefficients of restitution, concentration, and the masses and diameters of the components of the mixture. The results apply in principle for arbitrary degree of inelasticity and are not limited to specific values of concentration, mass and/or size ratios. As a simple application of these results, the violation of the Onsager reciprocal relations for a confined granular mixture is quantified in terms of the parameter space of the problem.
The Enskog-Landau kinetic equation is considered to describe non-equilibrium processes of a mixture of charged hard spheres. This equation has been obtained in our previous papers by means of the non-equilibrium statistical operator method. The normal solution of this kinetic equation found in the first approximation using the standard Chapman-Enskog method is given. On the basis of the found solution the flows and transport coefficients have been calculated. All transport coefficients for multicomponent mixture of spherical Coulomb particles are presented analytically for the first time. Numerical calculations of thermal conductivity and thermal diffusion coefficient are performed for some specific mixtures of noble gases of high density. We compare the calculations with those ones for point-like neutral and charged particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا