No Arabic abstract
The Chapman--Enskog solution to the Enskog kinetic equation of polydisperse granular mixtures is revisited to determine the first-order contributions $varpi_i$ to the partial temperatures. As expected, these quantities (which were neglected in previous attempts) are given in terms of the solution to a set of coupled integro-differential equations analogous to those for elastic collisions. The solubility condition for this set of equations is confirmed and the coefficients $varpi_i$ are calculated by using the leading terms in a Sonine polynomial expansion. These coefficients are given as explicit functions of the sizes, masses, composition, density, and coefficients of restitution of the mixture. Within the context of small gradients, the results apply for arbitrary degree of inelasticity and are not restricted to specific values of the parameters of the mixture. In the case of elastic collisions, previous expressions of $varpi_i$ for ordinary binary mixtures are recovered. Finally, the impact of the first-order coefficients $varpi_i$ on the bulk viscosity $eta_text{b}$ and the first-order contribution $zeta^{(1)}$ to the cooling rate is assessed. It is shown that the effect of $varpi_i$ on $eta_text{b}$ and $zeta^{(1)}$ is not negligible, specially for disparate mass ratios and strong inelasticity.
The Boltzmann kinetic equation is considered to evaluate the first-order contributions $T_i^{(1)}$ to the partial temperatures in binary granular suspensions at low density. The influence of the surrounding gas on the solid particles is modeled via a drag force proportional to the particle velocity plus a stochastic Langevin-like term. The Boltzmann equation is solved by means of the Chapman--Enskog expansion around the local version of the reference homogeneous base state. To first-order in spatial gradients, the coefficients $T_i^{(1)}$ are computed by considering the leading terms in a Sonine polynomial expansion. In addition, the influence of $T_i^{(1)}$ on the first-order contribution $zeta^{(1)}$ to the cooling rate is also assessed. Our results show that the magnitude of both $T_i^{(1)}$ and $zeta^{(1)}$ can be relevant for some values of the parameter space of the system.
The objective of this study is to assess the impact of a dense-phase treatment on the hydrodynamic description of granular, binary mixtures relative to a previous dilute-phase treatment. Two theories were considered for this purpose. The first, proposed by Garzo and Dufty (GD) [Phys. Fluids {bf 14}, 146 (2002)], is based on the Boltzmann equation which does not incorporate finite-volume effects, thereby limiting its use to dilute flows. The second, proposed by Garzo, Hrenya and Dufty (GHD) [Phys. Rev. E {bf 76}, 31303 and 031304 (2007)], is derived from the Enskog equation which does account for finite-volume effects; accordingly this theory can be applied to moderately dense systems as well. To demonstrate the significance of the dense-phase treatment relative to its dilute counterpart, the ratio of dense (GHD) to dilute (GD) predictions of all relevant transport coefficients and equations of state are plotted over a range of physical parameters (volume fraction, coefficients of restitution, material density ratio, diameter ratio, and mixture composition). These plots reveal the deviation between the two treatments, which can become quite large ($>$100%) even at moderate values of the physical parameters. Such information will be useful when choosing which theory is most applicable to a given situation, since the dilute theory offers relative simplicity and the dense theory offers improved accuracy. It is also important to note that several corrections to original GHD expressions are presented here in the form of a complete, self-contained set of relevant equations.
Transport coefficients associated with the mass flux of impurities immersed in a moderately dense granular gas of hard disks or spheres described by the inelastic Enskog equation are obtained by means of the Chapman-Enskog expansion. The transport coefficients are determined as the solutions of a set of coupled linear integral equations recently derived for polydisperse granular mixtures [V. Garzo, J. W. Dufty and C. M. Hrenya, Phys. Rev. E {bf 76}, 031304 (2007)]. With the objective of obtaining theoretical expressions for the transport coefficients that are sufficiently accurate for highly inelastic collisions, we solve the above integral equations by using the second Sonine approximation. As a complementary route, we numerically solve by means of the direct simulation Monte Carlo method (DSMC) the inelastic Enskog equation to get the kinetic diffusion coefficient $D_0$ for two and three dimensions. We have observed in all our simulations that the disagreement, for arbitrarily large inelasticity, in the values of both solutions (DSMC and second Sonine approximation) is less than 4%. Moreover, we show that the second Sonine approximation to $D_0$ yields a dramatic improvement (up to 50%) over the first Sonine approximation for impurity particles lighter than the surrounding gas and in the range of large inelasticity. The results reported in this paper are of direct application in important problems in granular flows, such as segregation driven by gravity and a thermal gradient. We analyze here the segregation criteria that result from our theoretical expressions of the transport coefficients.
Finite temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.
The Einstein relation for a driven moderately dense granular gas in $d$-dimensions is analyzed in the context of the Enskog kinetic equation. The Enskog equation neglects velocity correlations but retains spatial correlations arising from volume exclusion effects. As expected, there is a breakdown of the Einstein relation $epsilon=D/(T_0mu) eq 1$ relating diffusion $D$ and mobility $mu$, $T_0$ being the temperature of the impurity. The kinetic theory results also show that the violation of the Einstein relation is only due to the strong non-Maxwellian behavior of the reference state of the impurity particles. The deviation of $epsilon$ from unity becomes more significant as the solid volume fraction and the inelasticity increase, especially when the system is driven by the action of a Gaussian thermostat. This conclusion qualitatively agrees with some recent simulations of dense gases [Puglisi {em et al.}, 2007 {em J. Stat. Mech.} P08016], although the deviations observed in computer simulations are more important than those obtained here from the Enskog kinetic theory. Possible reasons for the quantitative discrepancies between theory and simulations are discussed.