Do you want to publish a course? Click here

A Large Number of z > 6 Galaxies around a QSO at z = 6.43: Evidence for a Protocluster?

166   0   0.0 ( 0 )
 Added by Yousuke Utsumi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2<z<5, the case for excess galaxy clustering around QSOs at z>6 is less clear. Previous studies with HST have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z=6.4 using the large field of view of the Suprime-Cam (34 x 27). Newly-installed CCDs allowed us to select Lyman break galaxies (LBG) at z~6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is ~10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of ~3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale. This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may indicate that (1) the strong UV radiation from the QSO suppressed galaxy formation in its vicinity, or (2) that star-formation closest to the QSO occurs mostly in an obscured mode that is missed by our UV selection.



rate research

Read More

We report an optical detection of an extended structure around a QSO at z=6.43 (CFHQSJ2329-0301, the highest redshift QSO currently known) in deep z and z_r-band images of the Subaru/Suprime-Cam. After a careful PSF (QSO) subtraction, a structure in the z-band extends more than 4 on the sky (R_e=11 kpc), and thus, is well-resolved (16sigma detection). The PSF-subtracted z_r-band structure is in a similar shape to that in the z-band, but less significant with a 3 sigma detection. In the z-band, a radial profile of the QSO+host shows a clear excess over that of the averaged PSF in 0.8-3 radius. Since the z-band includes a Lya emission at z=6.43, the z flux is perhaps a mixture of the host (continuum light) and its Lya emission, whereas the z_r-band flux is from the host. Through a SED modeling, we estimate 40% of the PSF-subtracted z-band light is from the host (continuum) and 60% is from Lya emission. The absolute magnitude of the host is M_{1450}=-23.9 (c.f. M_{1450}=-26.4 for the QSO). A lower limit of the SFR(Lya) is 1.6 Msun yr^{-1} with stellar mass ranging 6.2 x 10^8 to 1.1 x 10^10 Msun when 100 Myrs of age is assumed. The detection shows that a luminous QSO is already harbored by a large, star-forming galaxy in the early Universe only after ~840 Myr after the big bang. The host may be a forming giant galaxy, co-evolving with a super massive black hole.
195 - Tomotsugu Goto 2011
We have taken a deep, moderate-resolution Keck/Deimos spectra of QSO, CFHQS2329, at z=6.4. At the wavelength of Lya, the spectrum shows a spatially-extended component, which is significantly more extended than a stellar spectrum, and also a continuum part of the spectrum. The restframe line width of the extended component is 21+-7 A, and thus smaller than that of QSO (52+-4 A), where they should be identical if the light is incomplete subtraction of the QSO component. Therefore, these comparisons argue for the detection of a spatially extended Lya nebulae around this QSO. This is the first z>6 QSO that an extended Lya halo has been observed around. Careful subtraction of the central QSO spectrum reveals a lower limit to the Lya luminosity of (1.7+-0.1)x 10^43 erg s^-1. This emission may be from the theoretically predicted infalling gas in the process of forming a primordial galaxy that is ionized by a central QSO. On the other hand, if it is photoionized by the host galaxy, an estimated star-formation rate of >3.0 Msun yr^-1 is required. If we assume the gas is virialized, we obtain dynamical mass estimate of Mdyn=1.2x10^12 Msun. The derived MBH/Mhost is 2.1x10^-4, which is two orders smaller than those from more massive z~6 QSOs, and places this galaxy in accordance with the local M-sigma relation, in contrast to a previous claim on the evolution of M-sigma relation at z~6. We do not claim evolution or non-evolution of the M-sigma relation based on a single object, but our result highlights the importance of investigating fainter QSOs at z~6.
139 - Tomotsugu Goto 2011
Understanding the cosmic re-ionization is one of the key goals of the modern observational cosmology. High redshift QSO spectra can be used as background light sources to measure absorption by intervening neutral hydrogen. We investigate neutral hydrogen absorption in a deep, moderate-resolution Keck/Deimos spectrum of QSO CFHQSJ2329-0301 at z=6.4. This QSO is one of the highest redshift QSOs presently known at z=6.4 but is 2.5 mag fainter than a previously well-studied QSO SDSSJ1148+5251 at z=6.4. Therefore, it has a smaller Stromgren sphere, and allows us to probe the highest redshift hydrogen absorption to date. The average transmitted flux at 5.915<z_abs<6.365 (200 comoving Mpc) is consistent with zero, in Ly_alpha, Ly_beta, and Ly_gamma absorption measurements. This corresponds to the lower limit of optical depth, tau_eff>4.9. These results are consistent with strong evolution of the optical depth at z>5.7.
We study the environments of 6 radio galaxies at 2.2 < z < 2.6 using wide-field near-infrared images. We use colour cuts to identify galaxies in this redshift range, and find that three of the radio galaxies are surrounded by significant surface overdensities of such galaxies. The excess galaxies that comprise these overdensities are strongly clustered, suggesting they are physically associated. The colour distribution of the galaxies responsible for the overdensity are consistent with those of galaxies that lie within a narrow redshift range at z ~ 2.4. Thus the excess galaxies are consistent with being companions of the radio galaxies. The overdensities have estimated masses in excess of 10^14 solar masses, and are dense enough to collapse into virizalised structures by the present day: these structures may evolve into groups or clusters of galaxies. A flux-limited sample of protocluster galaxies with K < 20.6 mag is derived by statistically subtracting the fore- and background galaxies. The colour distribution of the protocluster galaxies is bimodal, consisting of a dominant blue sequence, comprising 77 +/- 10% of the galaxies, and a poorly populated red sequence. The blue protocluster galaxies have similar colours to local star-forming irregular galaxies (U -V ~ 0.6), suggesting most protocluster galaxies are still forming stars at the observed epoch. The blue colours and lack of a dominant protocluster red sequence implies that these cluster galaxies form the bulk of their stars at z < 3.
We present broad-band imaging with the Subaru Telescope of a 25x25 field surrounding the radio galaxy TN J1338-1942 at redshift z=4.1. The field contains excesses of Lyman-alpha emitters (LAEs) and Lyman break galaxies (LBGs) identified with a protocluster surrounding the radio galaxy. Our new wide-field images provide information about the boundary of the protocluster and its surroundings. There are 874 candidate LBGs within our field, having redshifts in the range z=3.5-4.5. An examination of the brightest of these (with i< 25.0) shows that the most prominent concentration coincides with the previously discovered protocluster. The diameter of this galaxy overdensity corresponds to ~2 Mpc at z=4, consistent with the previous estimation using LAEs. Several other concentrations of LBGs are observed in the field, some of which may well be physically connected with the z=4.1 protocluster. The observed structure in the smoothed LBG distribution can be explained as the projection of large-scale structure, within the redshift range z=3.5-4.5, comprising compact overdensities and prominent larger voids. If the 5-8 observed compact overdensities are associated with protoclusters, the observed protocluster volume density is ~5x10^-6 Mpc^-3, similar to the volume density of rich clusters in the local Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا