No Arabic abstract
We have taken a deep, moderate-resolution Keck/Deimos spectra of QSO, CFHQS2329, at z=6.4. At the wavelength of Lya, the spectrum shows a spatially-extended component, which is significantly more extended than a stellar spectrum, and also a continuum part of the spectrum. The restframe line width of the extended component is 21+-7 A, and thus smaller than that of QSO (52+-4 A), where they should be identical if the light is incomplete subtraction of the QSO component. Therefore, these comparisons argue for the detection of a spatially extended Lya nebulae around this QSO. This is the first z>6 QSO that an extended Lya halo has been observed around. Careful subtraction of the central QSO spectrum reveals a lower limit to the Lya luminosity of (1.7+-0.1)x 10^43 erg s^-1. This emission may be from the theoretically predicted infalling gas in the process of forming a primordial galaxy that is ionized by a central QSO. On the other hand, if it is photoionized by the host galaxy, an estimated star-formation rate of >3.0 Msun yr^-1 is required. If we assume the gas is virialized, we obtain dynamical mass estimate of Mdyn=1.2x10^12 Msun. The derived MBH/Mhost is 2.1x10^-4, which is two orders smaller than those from more massive z~6 QSOs, and places this galaxy in accordance with the local M-sigma relation, in contrast to a previous claim on the evolution of M-sigma relation at z~6. We do not claim evolution or non-evolution of the M-sigma relation based on a single object, but our result highlights the importance of investigating fainter QSOs at z~6.
Understanding the cosmic re-ionization is one of the key goals of the modern observational cosmology. High redshift QSO spectra can be used as background light sources to measure absorption by intervening neutral hydrogen. We investigate neutral hydrogen absorption in a deep, moderate-resolution Keck/Deimos spectrum of QSO CFHQSJ2329-0301 at z=6.4. This QSO is one of the highest redshift QSOs presently known at z=6.4 but is 2.5 mag fainter than a previously well-studied QSO SDSSJ1148+5251 at z=6.4. Therefore, it has a smaller Stromgren sphere, and allows us to probe the highest redshift hydrogen absorption to date. The average transmitted flux at 5.915<z_abs<6.365 (200 comoving Mpc) is consistent with zero, in Ly_alpha, Ly_beta, and Ly_gamma absorption measurements. This corresponds to the lower limit of optical depth, tau_eff>4.9. These results are consistent with strong evolution of the optical depth at z>5.7.
Understanding how QSOs UV radiation affects galaxy formation is vital to our understanding of reionization era. Using a custom made narrow-band filter, $NB906$, on Subaru/Suprime-Cam, we investigated the number density of Ly$alpha$ emitters (LAE) around a QSO at z=6.4. To date, this is the highest redshift narrow-band observation, where LAEs around a luminous QSO are investigated. Due to the large field-of-view of Suprime-Cam, our survey area is $sim$5400~cMpc$^2$, much larger than previously studies at z=5.7 ($sim$200 cMpc$^2$). In this field, we previously found a factor of 7 overdensity of Lyman break galaxies (LBGs). Based on this, we expected to detect $sim$100 LAEs down to $NB906$=25 ABmag. However, our 6.4 hour exposure found none. The obtained upper limit on the number density of LAEs is more than an order lower than the blank fields. Furthermore, this lower density of LAEs spans a large scale of 10 $p$Mpc across. A simple argument suggests a strong UV radiation from the QSO can suppress star-formation in halos with $M_{vir}<10^{10}M_{odot}$ within a $p$Mpc from the QSO, but the deficit at the edge of the field (5 $p$Mpc) remains to be explained.
QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2<z<5, the case for excess galaxy clustering around QSOs at z>6 is less clear. Previous studies with HST have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z=6.4 using the large field of view of the Suprime-Cam (34 x 27). Newly-installed CCDs allowed us to select Lyman break galaxies (LBG) at z~6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is ~10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of ~3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale. This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may indicate that (1) the strong UV radiation from the QSO suppressed galaxy formation in its vicinity, or (2) that star-formation closest to the QSO occurs mostly in an obscured mode that is missed by our UV selection.
We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10$^{-18}$ erg/s/cm$^2$/arcsec$^2$ over a 1 arcsec$^2$ aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x10$^{42}$ erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of n$_H$ ~ 6 cm$^{-3}$. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x10$^{42}$ erg/s and its inferred star-formation-rate is SFR ~ 1.3 M$_odot$/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.
We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i_775=27.3 via slitless grism spectroscopy. One ELG (at z=0.7895) is very bright owing to lensing magnification by a factor of ~4.5. Several Balmer emission lines detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M_* = 2 x 10^9 solar masses) with a high specific star formation rate (~20 /Gyr). From the blue emission lines we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H)=8.8 +/- 0.2). We break the continuous line-emitting region of this giant arc into seven ~1kpc bins (intrinsic size) and measure a variety of metallicity dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1kpc have a placement on the blue HII region excitation diagram with f([OIII])/f(Hbeta) and f([NeIII])/f(Hbeta) that can be fit by an AGN. This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxys extended tail, possibly instigated by a recent galaxy interaction.