Do you want to publish a course? Click here

A Gunn-Peterson test with a QSO at z=6.4

102   0   0.0 ( 0 )
 Added by Tomotsugu Goto
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the cosmic re-ionization is one of the key goals of the modern observational cosmology. High redshift QSO spectra can be used as background light sources to measure absorption by intervening neutral hydrogen. We investigate neutral hydrogen absorption in a deep, moderate-resolution Keck/Deimos spectrum of QSO CFHQSJ2329-0301 at z=6.4. This QSO is one of the highest redshift QSOs presently known at z=6.4 but is 2.5 mag fainter than a previously well-studied QSO SDSSJ1148+5251 at z=6.4. Therefore, it has a smaller Stromgren sphere, and allows us to probe the highest redshift hydrogen absorption to date. The average transmitted flux at 5.915<z_abs<6.365 (200 comoving Mpc) is consistent with zero, in Ly_alpha, Ly_beta, and Ly_gamma absorption measurements. This corresponds to the lower limit of optical depth, tau_eff>4.9. These results are consistent with strong evolution of the optical depth at z>5.7.

rate research

Read More

163 - Tomotsugu Goto 2011
We have taken a deep, moderate-resolution Keck/Deimos spectra of QSO, CFHQS2329, at z=6.4. At the wavelength of Lya, the spectrum shows a spatially-extended component, which is significantly more extended than a stellar spectrum, and also a continuum part of the spectrum. The restframe line width of the extended component is 21+-7 A, and thus smaller than that of QSO (52+-4 A), where they should be identical if the light is incomplete subtraction of the QSO component. Therefore, these comparisons argue for the detection of a spatially extended Lya nebulae around this QSO. This is the first z>6 QSO that an extended Lya halo has been observed around. Careful subtraction of the central QSO spectrum reveals a lower limit to the Lya luminosity of (1.7+-0.1)x 10^43 erg s^-1. This emission may be from the theoretically predicted infalling gas in the process of forming a primordial galaxy that is ionized by a central QSO. On the other hand, if it is photoionized by the host galaxy, an estimated star-formation rate of >3.0 Msun yr^-1 is required. If we assume the gas is virialized, we obtain dynamical mass estimate of Mdyn=1.2x10^12 Msun. The derived MBH/Mhost is 2.1x10^-4, which is two orders smaller than those from more massive z~6 QSOs, and places this galaxy in accordance with the local M-sigma relation, in contrast to a previous claim on the evolution of M-sigma relation at z~6. We do not claim evolution or non-evolution of the M-sigma relation based on a single object, but our result highlights the importance of investigating fainter QSOs at z~6.
Understanding how QSOs UV radiation affects galaxy formation is vital to our understanding of reionization era. Using a custom made narrow-band filter, $NB906$, on Subaru/Suprime-Cam, we investigated the number density of Ly$alpha$ emitters (LAE) around a QSO at z=6.4. To date, this is the highest redshift narrow-band observation, where LAEs around a luminous QSO are investigated. Due to the large field-of-view of Suprime-Cam, our survey area is $sim$5400~cMpc$^2$, much larger than previously studies at z=5.7 ($sim$200 cMpc$^2$). In this field, we previously found a factor of 7 overdensity of Lyman break galaxies (LBGs). Based on this, we expected to detect $sim$100 LAEs down to $NB906$=25 ABmag. However, our 6.4 hour exposure found none. The obtained upper limit on the number density of LAEs is more than an order lower than the blank fields. Furthermore, this lower density of LAEs spans a large scale of 10 $p$Mpc across. A simple argument suggests a strong UV radiation from the QSO can suppress star-formation in halos with $M_{vir}<10^{10}M_{odot}$ within a $p$Mpc from the QSO, but the deficit at the edge of the field (5 $p$Mpc) remains to be explained.
371 - Maxim Markevitch 1999
Using CCD detectors onboard the forthcoming X-ray observatories Chandra and XMM, it is possible to devise a measurement of the absolute density of heavy elements in the hypothetical warm gas filling intercluster space. This gas may be the largest reservoir of baryonic matter in the Universe, but even its existence has not been proven observationally at low redshifts. The proposed measurement would make use of a unique filament of galaxy clusters spanning over 700 Mpc (0.1<z<0.2) along the line of sight in a small area of the sky in Aquarius. The surface density of Abell clusters there is more than 6 times the sky average. It is likely that the intercluster matter column density is enhanced by a similar factor, making its detection feasible under certain optimistic assumptions about its density and elemental abundances. One can compare photoabsorption depth, mostly in the partially ionized oxygen edges, in the spectra of clusters at different distances along the filament, looking for a systematic increase of depth with the distance. The absorption can be measured by the same detector and through the same Galactic column, hence the differential test. A CCD moderate energy resolution (about 100 eV) is adequate for detecting an absorption edge at a known redshift.
QSOs have been thought to be important for tracing highly biased regions in the early universe, from which the present-day massive galaxies and galaxy clusters formed. While overdensities of star-forming galaxies have been found around QSOs at 2<z<5, the case for excess galaxy clustering around QSOs at z>6 is less clear. Previous studies with HST have reported the detection of small excesses of faint dropout galaxies in some QSO fields, but these surveys probed a relatively small region surrounding the QSOs. To overcome this problem, we have observed the most distant QSO at z=6.4 using the large field of view of the Suprime-Cam (34 x 27). Newly-installed CCDs allowed us to select Lyman break galaxies (LBG) at z~6.4 more efficiently. We found seven LBGs in the QSO field, whereas only one exists in a comparison field. The significance of this apparent excess is difficult to quantify without spectroscopic confirmation and additional control fields. The Poisson probability to find seven objects when one expects four is ~10%, while the probability to find seven objects in one field and only one in the other is less than 0.4%, suggesting that the QSO field is significantly overdense relative to the control field. We find some evidence that the LBGs are distributed in a ring-like shape centered on the QSO with a radius of ~3 Mpc. There are no candidate LBGs within 2 Mpc from the QSO, i.e., galaxies are clustered around the QSO but appear to avoid the very center. These results suggest that the QSO is embedded in an overdense region when defined on a sufficiently large scale. This suggests that the QSO was indeed born in a massive halo. The central deficit of galaxies may indicate that (1) the strong UV radiation from the QSO suppressed galaxy formation in its vicinity, or (2) that star-formation closest to the QSO occurs mostly in an obscured mode that is missed by our UV selection.
The spectra of several high-redshift (z>6) quasars have shown evidence for a Gunn-Peterson (GP) damping wing, indicating a substantial mean neutral hydrogen fraction (x_HI > 0.03) in the z ~ 6 intergalactic medium (IGM). However, previous analyses assumed that the IGM was uniformly ionized outside of the quasars HII region. Here we relax this assumption and model patchy reionization scenarios for a range of IGM and quasar parameters. We quantify the impact of these differences on the inferred x_HI, by fitting the spectra of three quasars: SDSS J1148+5251 (z=6.419), J1030+0524 (z=6.308), and J1623+3112 (z=6.247). We find that the best-fit values of x_HI in the patchy models agree well with the uniform case. More importantly, we confirm that the observed spectra favor the presence of a GP damping wing, with peak likelihoods decreasing by factors of > few - 10 when the spectra are modeled without a damping wing. We also find that the Ly alpha absorption spectra, by themselves, cannot distinguish the damping wing in a relatively neutral IGM from a damping wing in a highly ionized IGM, caused either by an isolated neutral patch, or by a damped Ly alpha absorber (DLA). However, neutral patches in a highly ionized universe (x_HI < 0.01), and DLAs with the large required column densities (N_HI > few x 10^{20} cm^{-2}) are both rare. As a result, when we include reasonable prior probabilities for the line of sight (LOS) to intercept either a neutral patch or a DLA at the required distance of ~ 40-60 comoving Mpc away from the quasar, we find strong lower limits on the neutral fraction in the IGM, x_HI > 0.1 (at 95% confidence). This strengthens earlier claims that a substantial global fraction of hydrogen in the z~6 IGM is in neutral form.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا