Do you want to publish a course? Click here

Bulk Viscosity and Relaxation Time of Causal Dissipative Relativistic Fluid Dynamics

140   0   0.0 ( 0 )
 Added by Tomoi Koide
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The microscopic formulae of the bulk viscosity $zeta $ and the corresponding relaxation time $tau_{Pi}$ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulae to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition and $tau_{Pi}$ and $zeta $ are related as $tau_{Pi}=zeta /[beta {(1/3-c_{s}^{2})(epsilon +P)-2(epsilon -3P)/9}]$, where $epsilon $, $P$ and $c_{s}$ are the energy density, pressure and velocity of sound, respectively. The predicted $zeta $ and $% tau_{Pi}$ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all the three approaches are consistent with the causality condition.



rate research

Read More

The microscopic formulas for the shear viscosity $eta$, the bulk viscosity $zeta$, and the corresponding relaxation times $tau_pi$ and $tau_Pi$ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure.We show that, when the operator definition for the bulk viscous pressure $Pi$ is appropriately chosen, the leading-order result of the ratio, $zeta$ over $tau_Pi$, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al.(2008) Ref. cite{con} by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.
119 - G.S. Denicol , T. Koide , 2010
We re-derive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast to the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latters definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
This paper presents how thermal mean field effects are incorporated consistently in the hydrodynamical modelling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity over its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the $beta_lambda$-function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cut-off. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of $zeta/tau_R$ for gases obeying Bose-Einstein statistics.
Einstein equations projected on to a black hole horizon gives rise to Navier-Stokes equations. Horizon-fluids typically possess unusual features like negative bulk viscosity and it is not clear whether a statistical mechanical description exists for such fluids. In this work, we provide an explicit derivation of the Bulk viscosity of the horizon-fluid based on the theory of fluctuations a la Kubo. The main advantage of our approach is that our analysis remains for the most part independent of the details of the underlying microscopic theory and hence the conclusions reached here are model independent. We show that the coefficient of bulk viscosity for the horizon-fluid matches exactly with the value found from the equations of motion for the horizon-fluid.
Here we derive the relativistic resistive dissipative second-order magnetohydrodynamic evolution equations using the Boltzmann equation, thus extending our work from the previous paper href{https://link.springer.com/article/10.1007/JHEP03(2021)216}{JHEP 03 (2021) 216} where we considered the non-resistive limit. We solve the Boltzmann equation for a system of particles and antiparticles using the relaxation time approximation and the Chapman-Enskog like gradient expansion for the off-equilibrium distribution function, truncating beyond second-order. In the first order, the bulk and shear stress are independent of the electromagnetic field, however, the diffusion current, shows a dependence on the electric field. In the first order, the transport coefficients~(shear and bulk stress) are shown to be independent of the electromagnetic field. The diffusion current, however, shows a dependence on the electric field. In the second-order, the new transport coefficients that couple electromagnetic field with the dissipative quantities appear, which are different from those obtained in the 14-moment approximation~cite{Denicol:2019iyh} in the presence of the electromagnetic field. Also we found out the various components of conductivity in this case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا