No Arabic abstract
The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.
We propose an experimental setup that is capable of unambiguously discriminating any pair of linearly independent single photon polarization qubits, about which we dont have any knowledge except that an extra pair of these unknown states are provided as the reference. This setup, which is constructed with optical CNOT gates, weak cross Kerr non-linearities, Bell state analysers and other linear optical elements, transforms the unknown triple photon input states to the corresponding single photon states to be deterministically processed by linear optics circuit. The optimal discrimination of the unknown states is achieved by this setup.
We study the generation of planar quantum squeezed (PQS) states by quantum non-demolition (QND) measurement of a cold ensemble of $^{87}$Rb atoms. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the $F_y$ and $F_z$ components of the PQS, revealing the dual squeezing characteristic of PQS. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS gives a metrological advantage of at least 3.1 dB relative to classical states. The PQS also beats traditional squeezed states generated with the same QND resources, except for a narrow range of phase values. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage.
The problem of conditions on the initial correlations between the system and the environment that lead to completely positive (CP) or not-completely positive (NCP) maps has been studied by various authors. Two lines of study may be discerned: one concerned with families of initial correlations that induce CP dynamics under the application of an arbitrary joint unitary on the system and environment; the other concerned with specific initial states that may be highly entangled. Here we study the latter problem, and highlight the interplay between the initial correlations and the unitary applied. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.
Measures of entanglement can be employed for the analysis of numerous quantum information protocols. Due to computational convenience, logarithmic negativity is often the choice in the case of continuous variable systems. In this work, we analyse a continuous variable measurement-based entanglement distillation experiment using a collection of entanglement measures. This includes: logarithmic negativity, entanglement of formation, distillable entanglement, relative entropy of entanglement, and squashed entanglement. By considering the distilled entanglement as a function of the success probability of the distillation protocol, we show that the logarithmic negativity surpasses the bound on deterministic entanglement distribution at a relatively large probability of success. This is in contrast to the other measures which would only be able to do so at much lower probabilities, hence demonstrating that logarithmic negativity alone is inadequate for assessing the performance of the distillation protocol. In addition to this result, we also observed an increase in the distillable entanglement by making use of upper and lower bounds to estimate this quantity. We thus demonstrate the utility of these theoretical tools in an experimental setting.
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasi-probability distribution (Wigner function) [Phys Rev Lett 117, 180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBMs Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger (GHZ) state. As Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how using these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrodinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterisation methods.