Do you want to publish a course? Click here

Universal discriminator for completely unknown optical qubits

89   0   0.0 ( 0 )
 Added by Bing He
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an experimental setup that is capable of unambiguously discriminating any pair of linearly independent single photon polarization qubits, about which we dont have any knowledge except that an extra pair of these unknown states are provided as the reference. This setup, which is constructed with optical CNOT gates, weak cross Kerr non-linearities, Bell state analysers and other linear optical elements, transforms the unknown triple photon input states to the corresponding single photon states to be deterministically processed by linear optics circuit. The optimal discrimination of the unknown states is achieved by this setup.



rate research

Read More

The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.
437 - Xiu-Hao Deng , Yong Hu , Lin Tian 2011
The quantum degeneracy point approach [D. Vion et al., Science 296, 886 (2002)] effectively protects superconducting qubits from low-frequency noise that couples with the qubits as transverse noise. However, low-frequency noise in superconducting qubits can originate from various mechanisms and can couple with the qubits either as transverse or as longitudinal noise. Here, we present a quantum circuit containing a universal quantum degeneracy point that protects an encoded qubit from arbitrary low-frequency noise. We further show that universal quantum logic gates can be performed on the encoded qubit with high gate fidelity. The proposed scheme is robust against small parameter spreads due to fabrication errors in the superconducting qubits.
The Eastin-Knill theorem states that no quantum error correcting code can have a universal set of transversal gates. For self-dual CSS codes that can implement Clifford gates transversally it suffices to provide one additional non-Clifford gate, such as the $T$-gate, to achieve universality. Common methods to implement fault-tolerant $T$-gates like magic state distillation generate a significant hardware overhead that will likely prevent their practical usage in the near-term future. Recently methods have been developed to mitigate the effect of noise in shallow quantum circuits that are not protected by error correction. Error mitigation methods require no additional hardware resources but suffer from a bad asymptotic scaling and apply only to a restricted class of quantum algorithms. In this work, we combine both approaches and show how to implement encoded Clifford+$T$ circuits where Clifford gates are protected from noise by error correction while errors introduced by noisy encoded $T$-gates are mitigated using the quasi-probability method. As a result, Clifford+$T$ circuits with a number of $T$-gates inversely proportional to the physical noise rate can be implemented on small error-corrected devices without magic state distillation. We argue that such circuits can be out of reach for state-of-the-art classical simulation algorithms.
106 - Dominik Janzing 2001
The well-known algorithm for quantum phase estimation requires that the considered unitary is available as a conditional transformation depending on the quantum state of an ancilla register. We present an algorithm converting an unknown n-qubit pair-interaction Hamiltonian into a conditional one such that standard phase estimation can be applied to measure the energy. Our essential assumption is that the considered system can be brought into interaction with a quantum computer. For large n the algorithm could still be applicable for estimating the density of energy states and might therefore be useful for finding energy gaps in solid states.
We report high-fidelity laser-beam-induced quantum logic gates on magnetic-field-insensitive qubits comprised of hyperfine states in $^{9}$Be$^+$ ions with a memory coherence time of more than 1 s. We demonstrate single-qubit gates with error per gate of $3.8(1)times 10^{-5}$. By creating a Bell state with a deterministic two-qubit gate, we deduce a gate error of $8(4)times10^{-4}$. We characterize the errors in our implementation and discuss methods to further reduce imperfections towards values that are compatible with fault-tolerant processing at realistic overhead.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا