Do you want to publish a course? Click here

Quantum phase space measurement and entanglement validation made easy

64   0   0.0 ( 0 )
 Added by Mark Everitt
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasi-probability distribution (Wigner function) [Phys Rev Lett 117, 180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBMs Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger (GHZ) state. As Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how using these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrodinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterisation methods.



rate research

Read More

We give a short proof of Gaos Quantum Union Bound and Gentle Sequential Measurement theorems.
We develop taggers for multi-pronged jets that are simple functions of jet substructure (so-called `subjettiness) variables. These taggers can be approximately decorrelated from the jet mass in a quite simple way. Specifically, we use a Logistic Regression Design (LoRD) which, even being one of the simplest machine learning classifiers, shows a performance which surpasses that of simple variables used by the ATLAS and CMS Collaborations and is not far from more complex models based on neural networks. Contrary to the latter, our method allows for an easy implementation of tagging tasks by providing a simple and interpretable analytical formula with already optimised parameters.
239 - Jing-Ling Chen , Kang Xue , 2007
We show that braiding transformation is a natural approach to describe quantum entanglement, by using the unitary braiding operators to realize entanglement swapping and generate the GHZ states as well as the linear cluster states. A Hamiltonian is constructed from the unitary $check{R}_{i,i+1}(theta,phi)$-matrix, where $phi=omega t$ is time-dependent while $theta$ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space.
147 - Hitoshi Murayama 2007
The kind of supersymmetry that can be discovered at the LHC must be very much flavor-blind, which used to require very special intelligently designed models of supersymmetry breaking. This led to the pessimism for some in the community that it is not likely for the LHC to discover supersymmetry. I point out that this is not so, because a garden-variety supersymmetric theories actually can do this job.
We investigate entanglement properties at quantum phase transitions of an integrable extended Hubbard model in the momentum space representation. Two elementary subsystems are recognized: the single mode of an electron, and the pair of modes (electrons coupled through the eta-pairing mechanism). We first detect the two/multi-partite nature of each quantum phase transition by a comparative study of the singularities of Von Neumann entropy and quantum mutual information. We establish the existing relations between the correlations in the momentum representation and those exhibited in the complementary picture: the direct lattice representation. The presence of multipartite entanglement is then investigated in detail through the Q-measure, namely a generalization of the Meyer-Wallach measure of entanglement. Such a measure becomes increasingly sensitive to correlations of a multipartite nature increasing the size of the reduced density matrix. In momentum space, we succeed in obtaining the latter for our system at arbitrary size and we relate its behaviour to the nature of the various QPTs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا