Do you want to publish a course? Click here

Entanglement-enhanced phase estimation without prior phase information

69   0   0.0 ( 0 )
 Added by Robert John Sewell
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the generation of planar quantum squeezed (PQS) states by quantum non-demolition (QND) measurement of a cold ensemble of $^{87}$Rb atoms. Precise calibration of the QND measurement allows us to infer the conditional covariance matrix describing the $F_y$ and $F_z$ components of the PQS, revealing the dual squeezing characteristic of PQS. PQS states have been proposed for single-shot phase estimation without prior knowledge of the likely values of the phase. We show that for an arbitrary phase, the generated PQS gives a metrological advantage of at least 3.1 dB relative to classical states. The PQS also beats traditional squeezed states generated with the same QND resources, except for a narrow range of phase values. Using spin squeezing inequalities, we show that spin-spin entanglement is responsible for the metrological advantage.



rate research

Read More

This paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.
Bayesian estimation approaches, which are capable of combining the information of experimental data from different likelihood functions to achieve high precisions, have been widely used in phase estimation via introducing a controllable auxiliary phase. Here, we present a non-adaptive Bayesian phase estimation (BPE) algorithms with an ingenious update rule of the auxiliary phase designed via active learning. Unlike adaptive BPE algorithms, the auxiliary phase in our algorithm is determined by a pre-established update rule with simple statistical analysis of a small batch of data, instead of complex calculations in every update trails. As the number of measurements for a same amount of Bayesian updates is significantly reduced via active learning, our algorithm can work as efficient as adaptive ones and shares the advantages (such as wide dynamic range and perfect noise robustness) of non-adaptive ones. Our algorithm is of promising applications in various practical quantum sensors such as atomic clocks and quantum magnetometers.
Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N. It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N <= 6, but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaevs phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.
The Robust Phase Estimation (RPE) protocol was designed to be an efficient and robust way to calibrate quantum operations. The robustness of RPE refers to its ability to estimate a single parameter, usually gate amplitude, even when other parameters are poorly calibrated or when the gate experiences significant errors. Here we demonstrate the robustness of RPE to errors that affect initialization, measurement, and gates. In each case, the error threshold at which RPE begins to fail matches quantitatively with theoretical bounds. We conclude that RPE is an effective and reliable tool for calibration of one-qubit rotations and that it is particularly useful for automated calibration routines and sensor tasks.
The high-precision interferometric measurement of an unknown phase is the basis for metrology in many areas of science and technology. Quantum entanglement provides an increase in sensitivity, but present techniques have only surpassed the limits of classical interferometry for the measurement of small variations about a known phase. Here we introduce a technique that combines entangled states with an adaptive algorithm to precisely estimate a completely unspecified phase, obtaining more information per photon that is possible classically. We use the technique to make the first ab initio entanglement-enhanced optical phase measurement. This approach will enable rapid, precise determination of unknown phase shifts using interferometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا