Do you want to publish a course? Click here

Single ion implantation for single donor devices using Geiger mode detectors

72   0   0.0 ( 0 )
 Added by Edward Bielejec
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Improving single ion detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 um from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as 1E-1 and 1E-4 for operation temperatures of 300K and 77K, respectively. Low temperature operation and reduced false, dark, counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 1E-4 at an average ion number per gated window of 0.015.



rate research

Read More

We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.
The attributes of group-V-donor spins implanted in an isotopically purified $^{28}$Si crystal make them attractive qubits for large-scale quantum computer devices. Important features include long nuclear and electron spin lifetimes of $^{31}$P, hyperfine clock transitions in $^{209}$Bi and electrically controllable $^{123}$Sb nuclear spins. However, architectures for scalable quantum devices require the ability to fabricate deterministic arrays of individual donor atoms, placed with sufficient precision to enable high-fidelity quantum operations. Here we employ on-chip electrodes with charge-sensitive electronics to demonstrate the implantation of single low-energy (14 keV) P$^+$ ions with an unprecedented $99.87pm0.02$% confidence, while operating close to room-temperature. This permits integration with an atomic force microscope equipped with a scanning-probe ion aperture to address the critical issue of directing the implanted ions to precise locations. These results show that deterministic single-ion implantation can be a viable pathway for manufacturing large-scale donor arrays for quantum computation and other applications.
Triple donor devices have the potential to exhibit adiabatic tunneling via the CTAP (Coherent Tunneling Adiabatic Passage) protocol which is a candidate transport mechanism for scalable quantum computing. We examine theoretically the statistics of dopant placement using counted ion implantation by employing an analytical treatment of CTAP transport properties under hydrogenic assumptions. We determine theoretical device yields for proof of concept devices for different implant energies. In particular, we determine a significant theoretical device yield (~80%) for 14keV phosphorus in silicon with nominal 20nm spacing.
We report a 2mu m ultrafast solid-state Tm:Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited~410fs pulses, with a spectral width~11.1nm at 2067nm. The maximum average output power is 270mW, at a pulse repetition frequency of 110MHz. This is a convenient high-power transform-limited laser at 2mu m for various applications, such as laser surgery and material processing.
Many of graphenes unique electronic properties emerge from its Dirac-like electronic energy spectrum. Similarly, it is expected that a nanophotonic system featuring Dirac dispersion will open a path to a number of important research avenues. To date, however, all proposed realizations of a photonic analog of graphene lack fully omnidirectional out-of-plane light confinement, which has prevented creating truly realistic implementations of this class of systems. Here we report on a novel route to achieve all-dielectric three-dimensional photonic materials featuring Dirac-like dispersion in a quasi-two-dimensional system. We further discuss how this finding could enable a dramatic enhancement of the spontaneous emission coupling efficiency (the beta-factor) over large areas, defying the common wisdom that the beta-factor degrades rapidly as the size of the system increases. These results might enable general new classes of large-area ultralow-threshold lasers, single-photon sources, quantum information processing devices and energy harvesting systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا