Do you want to publish a course? Click here

Strategies for triple-donor devices fabricated by ion implantation

179   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Triple donor devices have the potential to exhibit adiabatic tunneling via the CTAP (Coherent Tunneling Adiabatic Passage) protocol which is a candidate transport mechanism for scalable quantum computing. We examine theoretically the statistics of dopant placement using counted ion implantation by employing an analytical treatment of CTAP transport properties under hydrogenic assumptions. We determine theoretical device yields for proof of concept devices for different implant energies. In particular, we determine a significant theoretical device yield (~80%) for 14keV phosphorus in silicon with nominal 20nm spacing.



rate research

Read More

Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Improving single ion detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 um from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ~600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of <2.5 nm. Significant reduction in false count probability is achieved by modifying the ion beam set-up to allow for cryogenic operation of the SIGMA detector. Using a detection window of 230 ns at 1 Hz, the probability of a false count was measured as 1E-1 and 1E-4 for operation temperatures of 300K and 77K, respectively. Low temperature operation and reduced false, dark, counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 1E-4 at an average ion number per gated window of 0.015.
We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.
81 - N.-J. Guo , W. Liu , Z.-P. Li 2021
Optically addressable spin defects in wide-bandage semiconductors as promising systems for quantum information and sensing applications have attracted more and more attention recently. Spin defects in two-dimensional materials are supposed to have unique superiority in quantum sensing since their atomatic thickness. Here, we demonstrate that the negatively boron charged vacancy (V$ _text{B}^{-} $) with good spin properties in hexagonal boron nitride can be generated by ion implantation. We carry out optically detected magnetic resonance measurements at room temperature to characterize the spin properties of V$ _text{B}^{-} $ defects, showing zero-filed splitting of $ sim $ 3.47 GHz. We compare the photoluminescence intensity and spin properties of V$ _text{B}^{-} $ defects generated by different implantation parameters, such as fluence, energy and ion species. With proper parameters, we can create V$ _text{B}^{-} $ defects successfully with high probability. Our results provide a simple and practicable method to create spin defects in hBN, which is of great significance for integrated hBN-based devices.
Diamond has attracted great interest as a quantum technology platform thanks to its optically active nitrogen vacancy center (NV). The NVs ground state spin can be read out optically exhibiting long spin coherence times of about 1 ms even at ambient temperatures. In addition, the energy levels of the NV are sensitive to external fields. These properties make NVs attractive as a scalable platform for efficient nanoscale resolution sensing based on electron spins and for quantum information systems. Diamond photonics enhances optical interaction with NVs, beneficial for both quantum sensing and information. Diamond is also compelling for microfluidic applications due to its outstanding biocompatibility, with sensing functionality provided by NVs. However, it remains a significant challenge to fabricate photonics, NVs and microfluidics in diamond. In this Report, an overview is provided of ion irradiation and femtosecond laser writing, two promising fabrication methods for diamond based quantum technological devices. The unique capabilities of both techniques are described, and the most important fabrication results of color center, optical waveguide and microfluidics in diamond are reported, with an emphasis on integrated devices aiming towards high performance quantum sensors and quantum information systems of tomorrow
The attributes of group-V-donor spins implanted in an isotopically purified $^{28}$Si crystal make them attractive qubits for large-scale quantum computer devices. Important features include long nuclear and electron spin lifetimes of $^{31}$P, hyperfine clock transitions in $^{209}$Bi and electrically controllable $^{123}$Sb nuclear spins. However, architectures for scalable quantum devices require the ability to fabricate deterministic arrays of individual donor atoms, placed with sufficient precision to enable high-fidelity quantum operations. Here we employ on-chip electrodes with charge-sensitive electronics to demonstrate the implantation of single low-energy (14 keV) P$^+$ ions with an unprecedented $99.87pm0.02$% confidence, while operating close to room-temperature. This permits integration with an atomic force microscope equipped with a scanning-probe ion aperture to address the critical issue of directing the implanted ions to precise locations. These results show that deterministic single-ion implantation can be a viable pathway for manufacturing large-scale donor arrays for quantum computation and other applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا