No Arabic abstract
We present a theoretical investigation of the effect of multiple ionisation sources in HII regions on the total elemental abundances derived from the analysis of collisionally excited emission lines. We focus on empirical methods based on direct temperature measurements that are commonly employed in cases when the temperature of the nebular gas can be determined from the ratio of nebular to auroral lines of (e.g.) doubly ionised oxygen. We find that direct temperature methods that employ a two-temperature zone approach (DT2T methods) are very robust against the spatial distribution of sources. Errors smaller than 0.15 dex are estimated for regions where the metallicity is twice solar and errors below 0.05 dex for solar metallicities and below. The biases introduced by the spatial distribution of the ionisation sources are thus much smaller for DT2T methods than for strong line methods, previously investigated by Ercolano, Bastian & Stasinska. Our findings are in agreement with the recent study of HII regions in NGC 300 by Bresolin et al.
We provide a new method to derive heavy element abundances based on the unique suite of nebular lines in the mid- to far-infrared (IR) range. Using grids of photo-ionisation models that cover a wide range in O/H and N/O abundances, and ionisation parameter, our code HII-Chi-mistry-IR (HCm-IR) provides model-based abundances based on extinction free and temperature insensitive tracers, two significant advantages over optical diagnostics. The code is probed using a sample of 56 galaxies observed with $Spitzer$ and $Herschel$ covering a wide range in metallicity, $7.2 lesssim 12+log(O/H) lesssim 8.9$. The IR model-based metallicities obtained are robust within a scatter of 0.03 dex when the hydrogen recombination lines, which are typically faint transitions in the IR range, are not available. When compared to the optical abundances obtained with the direct method, model-based methods, and strong-line calibrations, HCm-IR estimates show a typical dispersion of ~0.2 dex, in line with previous studies comparing IR and optical abundances, a do not introduce a noticeable systematic above $12+log(O/H) gtrsim 7.6$. This accuracy can be achieved using the lines [SIV]$_{10.5 mu m}$, [SIII]$_{18.7,33.5 mu m}$, [NeIII]$_{15.6 mu m}$ and [NeII]$_{12.8 mu m}$. Additionally, HCm-IR provides an independent N/O measurement when the [OIII]$_{52,88 mu m}$ and [NIII]$_{57 mu m}$ transitions are measured, and therefore the derived abundances in this case do not rely on particular assumptions in the N/O ratio. Large uncertainties (~0.4 dex) may affect the abundance determinations of galaxies at sub- or over-solar metallicities when a solar-like N/O ratio is adopted. Finally, the code has been applied to 8 galaxies located at $1.8 < z < 7.5$ with ground-based detections of far-IR lines redshifted in the submm range, revealing solar-like N/O and O/H abundances in agreement with recent studies.
We present new criteria for selecting HII regions from the Infrared Astronomical Satellite (IRAS) Point Source catalogue (PSC), based on an HII region catalogue derived manually from the all-sky Wide-field Infrared Survey Explorer (WISE). The criteria are used to augment the number of HII region candidates in the Milky Way. The criteria are defined by the linear decision boundary of two samples: IRAS point sources associated with known HII regions, which serve as the HII region sample, and IRAS point sources at high Galactic latitudes, which serve as the non-HII region sample. A machine learning classifier, specifically a support vector machine (SVM), is used to determine the decision boundary. We investigate all combinations of four IRAS bands and suggest that the optimal criterion is log(F$_{rm 60}$/F$_{rm 12}$)$ge$(-0.19$times$log(F$_{rm 100}$/F$_{rm 25}$)+ 1.52), with detections at 60 and 100 micron. This selects 3041 HII region candidates from the IRAS PSC. We find that IRAS HII region candidates show evidence of evolution on the two-colour diagram. Merging the WISE HII catalogue with IRAS HII region candidates, we estimate a lower limit of approximately 10200 for the number of HII regions in the Milky Way.
By using the Hectospec 6.5 m Multiple Mirror Telescope (MMT) and the 2.16 m telescope of National Astronomical Observatories, Chinese Academy of Sciences (NAOC), we obtained 188 high signal-to-noise ratio (S/N) spectra of HII regions in the nearby galaxy M101, which are the largest spectroscopic sample of HII regions for this galaxy so far. These spectra cover a wide range of regions on M101, which enables us to analyze two dimensional distributions of its physical properties. The physical parameters are derived from emission lines or stellar continuum, including stellar population age, electron temperature, oxygen abundance and etc. The oxygen abundances are derived using two empirical methods based on O3N2 and R$_{23}$ indicators, as well as the direct Te method when OIII$lambda4363$ is available. By applying the harmonic decomposition analysis to the velocity field, we obtained line-of-sight rotation velocity of 71 km s$^{-1}$ and a position angle of 36 degree. The stellar age profile shows an old stellar population in galaxy center and a relative young stellar population in outer regions, suggesting an old bulge and a young disk. Oxygen abundance profile exhibits a clear break at $sim$18 kpc, with a gradient of $-$0.0364 dex kpc$^{-1}$ in the inner region and $-$0.00686 dex kpc$^{-1}$ in the outer region. Our results agree with the inside-out disk growth scenario of M101.
We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197,637 individual spectra, using Integral Field Spectrocopy (IFS) recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to ~2 effective radii (re ), sampling its morphological structures with unprecedented spatial resolution for a wide-field IFU. A complete census of the H ii regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogue of H ii regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of H ii regions allow us to estimate the typical mixing scale-length (rmix ~0.4 re ), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms, when comparing with simulations. We found evidence for an azimuthal variation of the oxygen abundance, that may be related with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.