No Arabic abstract
We present a study of the HII regions in the galaxy NGC 6754 from a two pointing mosaic comprising 197,637 individual spectra, using Integral Field Spectrocopy (IFS) recently acquired with the MUSE instrument during its Science Verification program. The data cover the entire galaxy out to ~2 effective radii (re ), sampling its morphological structures with unprecedented spatial resolution for a wide-field IFU. A complete census of the H ii regions limited by the atmospheric seeing conditions was derived, comprising 396 individual ionized sources. This is one of the largest and most complete catalogue of H ii regions with spectroscopic information in a single galaxy. We use this catalogue to derive the radial abundance gradient in this SBb galaxy, finding a negative gradient with a slope consistent with the characteristic value for disk galaxies recently reported. The large number of H ii regions allow us to estimate the typical mixing scale-length (rmix ~0.4 re ), which sets strong constraints on the proposed mechanisms for metal mixing in disk galaxies, like radial movements associated with bars and spiral arms, when comparing with simulations. We found evidence for an azimuthal variation of the oxygen abundance, that may be related with the radial migration. These results illustrate the unique capabilities of MUSE for the study of the enrichment mechanisms in Local Universe galaxies.
Gas infall and outflow are critical for determining the star formation rate and chemical evolution of galaxies but direct measurements of gas flows are diffcult to make. Young massive stars and HII regions in the halos of galaxies are potential tracers for accretion and/or outflows of gas. Gas phase abundances of three HII regions in the lower halos of the edge-on galaxies NGC 3628 and NGC 4522 are determined by analysing optical long-slit spectra. The observed regions have projected distances to the midplane of their host from 1.4 to 3 kpc. With the measured flux densities of the optical nebular emission lines, we derive the oxygen abundance 12 + log(O/H) for the three extraplanar HII regions. The analysis is based on one theoretical and two empirical strong-line calibration methods. The resulting oxygen abundances of the extraplanar HII regions are comparable to the disk HII regions in one case and a little lower in the other case. Since our results depend on the accuracy of the metallicity determinations, we critically discuss the difference of the calibration methods we applied and confirm previously noted offsets. From our measurements, we argue that these three extraplanar HII regions were formed in the disk or at least from disk material. We discuss the processes that could transport disk material into the lower halo of these systems and conclude that gravitational interaction with a companion galaxy is most likely for NGC 3628 while ram pressure is favoured in the case of NGC 4522.
We present a theoretical investigation of the effect of multiple ionisation sources in HII regions on the total elemental abundances derived from the analysis of collisionally excited emission lines. We focus on empirical methods based on direct temperature measurements that are commonly employed in cases when the temperature of the nebular gas can be determined from the ratio of nebular to auroral lines of (e.g.) doubly ionised oxygen. We find that direct temperature methods that employ a two-temperature zone approach (DT2T methods) are very robust against the spatial distribution of sources. Errors smaller than 0.15 dex are estimated for regions where the metallicity is twice solar and errors below 0.05 dex for solar metallicities and below. The biases introduced by the spatial distribution of the ionisation sources are thus much smaller for DT2T methods than for strong line methods, previously investigated by Ercolano, Bastian & Stasinska. Our findings are in agreement with the recent study of HII regions in NGC 300 by Bresolin et al.
We study the ionised ISM in NGC 7793 with MUSE/AO, at a spatial resolution of $sim$ 10 pc. The data are complemented with young star clusters (YSCs), O stars and GMCs observed with HST and ALMA. Using a strong-line method, we find a median $12 + log(O/H) sim 8.37$ with a scatter of 0.25 dex, in agreement with previous estimates. The abundance map is rich in substructures, surrounding clusters and massive stars, although clear degeneracies with photoionisation are present. We determine the observed total amount of ionising photons, $Q(H^0)$, from the extinction corrected H$alpha$ luminosity, and compare it to the expected $Q(H^0)$ obtained by summing the contributions of YSCs and massive stars, to obtain an escape fraction ($f_{esc}$). Overall, we find $f_{esc, HII} = 0.67_{-0.12}^{+0.08}$ for the population of HII regions. We also conclude that the sources of ionisation observed within the FoV are more than sufficient to explain the amount of diffuse ionised gas observed in this region of the galaxy. In general, we find that YSCs located in HII regions have a higher probability to be younger, less massive, and to emit a higher number of ionising photons than clusters in the rest of the field. Finally, we study the optical depth of the regions traced by [SII]/[OIII], finding no systematic trend between the resulting ionisation structure and $f_{esc}$. [abridged]
In general, HII regions do not show clear signs of self-enrichment in products from massive stars (M > 8 M_sun). In order to explore why, I modeled the contamination with Wolf-Rayet star ejecta of metal-poor (Z=0.001) HII regions, ionised either by a 10^6 M_sun cluster of coeval stars (cluster 1), or a cluster resulting from continuous star formation at a rate of 1 M_sun yr^-1 (cluster 2). The clusters have Z=0.001 and a Salpeter initial mass function (IMF) from 0.1 to 120 M_sun. Independent one dimensional constant density simulations of the emission-line spectra of unenriched HII regions were computed at the discrete ages 1, 2, 3, 4, and 5 Myr, with the photoionisation code CLOUDY, using as input, radiative and mechanical stellar feedbacks predicted by the evolutionary synthesis code STARBURST99. Each HII region was placed at the outer radius of the adiabatically expanding superbubble of Mac Low and McCray (1988). For models with thermal and ionisation balance time-scales of less than 1 Myr, and with oxygen emission-line ratios in agreement with observations, the interior of the superbubble and the HII region were uniformly and instantaneously polluted with stellar ejecta predicted by STARBURST99. I obtained a maximum oxygen abundance enhancement of 0.025 dex, with cluster 1, at 4 Myr. It would be unobservable.
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-compact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.