No Arabic abstract
We present new criteria for selecting HII regions from the Infrared Astronomical Satellite (IRAS) Point Source catalogue (PSC), based on an HII region catalogue derived manually from the all-sky Wide-field Infrared Survey Explorer (WISE). The criteria are used to augment the number of HII region candidates in the Milky Way. The criteria are defined by the linear decision boundary of two samples: IRAS point sources associated with known HII regions, which serve as the HII region sample, and IRAS point sources at high Galactic latitudes, which serve as the non-HII region sample. A machine learning classifier, specifically a support vector machine (SVM), is used to determine the decision boundary. We investigate all combinations of four IRAS bands and suggest that the optimal criterion is log(F$_{rm 60}$/F$_{rm 12}$)$ge$(-0.19$times$log(F$_{rm 100}$/F$_{rm 25}$)+ 1.52), with detections at 60 and 100 micron. This selects 3041 HII region candidates from the IRAS PSC. We find that IRAS HII region candidates show evidence of evolution on the two-colour diagram. Merging the WISE HII catalogue with IRAS HII region candidates, we estimate a lower limit of approximately 10200 for the number of HII regions in the Milky Way.
High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M $>8$ M$_odot$), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments.We present high-resolution ($sim$ 0.5$$) ALMA observations of nine HII regions selected from the Red MSX Source (RMS) survey with compact radio emission and bolometric luminosities greater than 10$^4$ L$_odot$. We focus on the initial presentation of the data, including initial results from the radio recombination line H29$alpha$, some complementary molecules, and the 256 GHz continuum emission. Of the six (out of nine) regions with H29$alpha$ detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J=5-4)), often (but not always) finding theHII region had cleared its immediate vicinity of molecules. Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29$alpha$ emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region.
We have carried out the largest and most unbiased search for hypercompact (HC) HII regions. Our method combines four interferometric radio continuum surveys (THOR, CORNISH, MAGPIS and White2005) with far-infrared and sub-mm Galactic Plane surveys to identify embedded HII regions with positive spectral indices. 120 positive spectrum HII regions have been identified from a total sample of 534 positive spectral index radio sources. None of these HII regions, including the known HCHII regions recovered in our search, fulfills the canonical definition of an HCHII region at 5 GHz. We suggest that the current canonical definition of HCHII regions is not accurate and should be revised to include a hierarchical structure of ionized gas that results in an extended morphology at 5 GHz. Correlating our search with known ultracompact (UC) HII region surveys, we find that roughly half of detected UCHII regions have positive spectral indices, instead of more commonly assumed flat and optically thin spectra. This implies a mix of optically thin and thick emission and has important implications for previous analyses which have so far assumed optically thin emission for these objects. Positive spectrum HII regions are statistically more luminous and possess higher Lyman continuum fluxes than HII regions with flat or negative indices. Positive spectrum HII regions are thus more likely to be associated with more luminous and massive stars. No differences are found in clump mass, linear diameter or luminosity-to-mass ratio between positive spectrum and non-positive spectrum HII regions.
We present a theoretical investigation of the effect of multiple ionisation sources in HII regions on the total elemental abundances derived from the analysis of collisionally excited emission lines. We focus on empirical methods based on direct temperature measurements that are commonly employed in cases when the temperature of the nebular gas can be determined from the ratio of nebular to auroral lines of (e.g.) doubly ionised oxygen. We find that direct temperature methods that employ a two-temperature zone approach (DT2T methods) are very robust against the spatial distribution of sources. Errors smaller than 0.15 dex are estimated for regions where the metallicity is twice solar and errors below 0.05 dex for solar metallicities and below. The biases introduced by the spatial distribution of the ionisation sources are thus much smaller for DT2T methods than for strong line methods, previously investigated by Ercolano, Bastian & Stasinska. Our findings are in agreement with the recent study of HII regions in NGC 300 by Bresolin et al.
Radiation hydrodynamics (RHD) simulations are used to study many astrophysical phenomena, however they require the use of simplified radiation transport and thermal prescriptions to reduce computational cost. In this paper we present a systematic study of the importance of microphysical processes in RHD simulations using the example of D-type HII region expansion. We compare the simplest hydrogen-only models with those that include: ionisation of H, He, C, N, O, S and Ne, different gas metallicity, non-LTE metal line blanketed stellar spectral models of varying metallicity, radiation pressure, dust and treatment of photodissociation regions. Each of these processes are explicitly treated using modern numerical methods rather than parameterisation. In line with expectations, changes due to microphysics in either the effective number of ionising photons or the thermal structure of the gas lead to differences in D-type expansion. In general we find that more realistic calculations lead to the onset of D-type expansion at smaller radii and a slower subsequent expansion. Simulations of star forming regions using simplified microphysics are therefore likely overestimating the strength of radiative feedback. We find that both variations in gas metallicity and the inclusion of dust can affect the ionisation front evolution at the 10-20 per cent level over 500kyr, which could substantially modify the results of simplified 3D models including feedback. Stellar metallicity, radiation pressure and the inclusion of photodissociation regions are all less significant effects at the 1 per cent level or less, rendering them of minor importance in the modelling the dynamical evolution of HII regions.
We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on the structure, dynamics and expansion laws of these regions. Once a massive star forms in our highly structured clouds, its ionising radiation eventually stops the accretion (through filaments) toward the massive star-forming regions. The new over-pressured H,{ ormalsize II} regions push away the dense gas, thus disrupting the more massive collapse centres. Also, because of the complex density structure in the cloud, the H,{ ormalsize II} regions expand in a hybrid manner: they virtually do not expand toward the densest regions (cores), while they expand according to the classical analytical result towards the rest of the cloud, and in an accelerated way, as a blister region, towards the diffuse medium. Thus, the ionised regions grow anisotropically, and the ionising stars generally appear off-centre of the regions. Finally, we find that the hypotheses assumed in standard H,{ ormalsize II}-region expansion models (fully embedded region, blister-type, or expansion in a density gradient) apply simultaneously in different parts of our simulated H,{ ormalsize II} regions, producing a net expansion law ($R propto t^alpha$, with $alpha$ in the range of 0.93-1.47 and a mean value of $1.2 pm 0.17$) that differs from any of those of the standard models.