Do you want to publish a course? Click here

S-bearing molecules in Massive Dense Cores

88   0   0.0 ( 0 )
 Added by Fabrice Herpin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chemical composition of the massive cores forming high-mass stars can put some constrains on the time scale of the massive star formation: sulphur chemistry is of specific interest due to its rapid evolution in warm gas and because the abundance of sulphur bearing species increases significantly with the temperature. Two mid-infrared quiet and two brighter massive cores are observed in various transitions (E_up up to 289K) of CS, OCS, H2S, SO, SO2 and of their isotopologues at mm wavelengths with the IRAM 30m and CSO telescopes. 1D modeling of the dust continuum is used to derive the density and temperature laws, which are then applied in the RATRAN code to model the observed line emission, and to derive the relative abundances of the molecules. All lines, except the highest energy SO2 transition, are detected. Infall (up to 2.9km/s) may be detected towards the core W43MM1. The inferred mass rate is 5.8-9.4 10^{-2} M_{odot}/yr. We propose an evolutionary sequence of our sources (W43MM1-IRAS18264-1152-IRAS05358+3543-IRAS18162-2048), based on the SED analysis. The analysis of the variations in abundance ratios from source to source reveals that the SO and SO2 relative abundances increase with time, while CS and OCS decrease. Molecular ratios, such as [OCS/H2S], [CS/H2S], [SO/OCS], [SO2/OCS], [CS/SO] and [SO2/SO] may be good indicators of evolution depending on layers probed by the observed molecular transitions. Observations of molecular emission from warmer layers, hence involving higher upper energy levels are mandatory to include.



rate research

Read More

251 - Gan Luo , Siyi Feng , Di Li 2019
We present an observational study of the sulfur (S)-bearing species towards Orion KL at 1.3 mm by combining ALMA and IRAM-30,m single-dish data. At a linear resolution of $sim$800 au and a velocity resolution of 1 $mathrm{km, s^{-1}, }$, we have identified 79 molecular lines from 6 S-bearing species. In these S-bearing species, we found a clear dichotomy between carbon-sulfur compounds and carbon-free S-bearing species in various characteristics, e.g., line profiles, spatial morphology, and molecular abundances with respect to $rm H_2$. Lines from the carbon-sulfur compounds (i.e., OCS, $^{13}$CS, H$_2$CS) exhibit spatial distributions concentrated around the continuum peaks and extended to the south ridge. The full width at half maximum (FWHM) linewidth of these molecular lines is in the range of 2 $sim$ 11 $mathrm{km, s^{-1}, }$. The molecular abundances of OCS and H$_2$CS decrease slightly from the cold ($sim$68 K) to the hot ($sim$176 K) regions. In contrast, lines from the carbon-free S-bearing species (i.e., SO$_2$, $^{34}$SO, H$_2$S) are spatially more extended to the northeast of mm4, exhibiting broader FWHM linewidths (15 $sim$ 26 $mathrm{km, s^{-1}, }$). The molecular abundances of carbon-free S-bearing species increase by over an order of magnitude as the temperature increase from 50 K to 100 K. In particular, $mathrm{^{34}SO/^{34}SO_2}$ and $mathrm{OCS/SO_2}$ are enhanced from the warmer regions ($>$100 K) to the colder regions ($sim$50 K). Such enhancements are consistent with the transformation of SO$_2$ at warmer regions and the influence of shocks.
We surveyed 81 dense molecular cores associated with regions of massive star formation and Sgr A in the 5_{05}-4_{04} and 10_{010}-9_{09} lines of HNCO. Line emission was detected towards 57 objects. Selected subsamples were also observed in other HNCO lines covering a frequency range from 22 to 461 GHz. HNCO lines from the K_{-1} = 2,3 ladders were detected in several sources. Towards Orion-KL, K_{-1} = 5 transitions with upper state energies E_u/k ~ 1100 and 1300 K could be observed. Five HNCO cores were mapped. The sources remain spatially unresolved at 220 and 461 GHz with beam sizes of 24 and 18, respectively. Typical HNCO abundances relative to H_2 as derived from a population diagram analysis are ~ 10^{-9}. The rotational temperatures reach ~ 500 K. The gas densities in regions of HNCO $K_{-1}=0$ emission should be n > 10^6 cm^{-3} and in regions of K_{-1}>0 emission about an order of magnitude higher even for radiative excitation. HNCO abundances are found to be enhanced in high-velocity gas. HNCO integrated line intensities correlate well with those of thermal SiO emission. This indicates a spatial coexistence of the two species and may hint at a common production mechanism, presumably based on shock chemistry.
Young massive stars are usually found embedded in dense massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the very early formation stages. In this work, we test the observability of the ground-state transition of ortho-H$_2$D$^+$ $J_{rm {K_a, K_c}} = 1_{10}$-$1_{11} $ by performing interferometric and single-dish synthetic observations using magneto-hydrodynamic simulations of high-mass collapsing molecular cores, including deuteration chemistry. We studied different evolutionary times and source distances (from 1 to 7 kpc) to estimate the information loss when comparing the column densities inferred from the synthetic observations to the column densities in the model. We mimicked single-dish observations considering an APEX-like beam and interferometric observations using CASA and assuming the most compact configuration for the ALMA antennas. We found that, for centrally concentrated density distributions, the column densities are underestimated by about 51% in the case of high-resolution ALMA observations ($leqslant$1) and up to 90% for APEX observations (17). Interferometers retrieve values closer to the real ones, however, their finite spatial sampling results in the loss of contribution from large-scale structures due to the lack of short baselines. We conclude that, the emission of o-H$_2$D$^+$ in distant massive dense cores is faint and would require from $sim$1 to $sim$7 hours of observation at distances of 1 and 7 kpc, respectively, to achieve a 14$sigma$ detection in the best case scenario. Additionally, the column densities derived from such observations will certainly be affected by beam dilution in the case of single-dishes and spatial filtering in the case of interferometers.
We have observed several emission lines of two Nitrogen-bearing (C2H5CN and C2H3CN) and two Oxygen-bearing (CH3OCH3 and HCOOCH3) molecules towards a sample of well-known hot molecular cores (HMCs) in order to check whether the chemical differentiation seen in the Orion-HMC and W3(H_2O) between O- and N-bearing molecules is a general property of HMCs. With the IRAM-30m telescope we have observed 12 HMCs in 21 bands, centered at frequencies from 86250 to 258280 MHz. The rotational temperatures obtained range from ~100 to ~150 K in these HMCs. Single Gaussian fits performed to unblended lines show a marginal difference in the line peak velocities of the C2H5CN and CH3OCH3 lines, indicating a possible spatial separation between the region traced by the two molecules. On the other hand, neither the linewidths nor the rotational temperatures and column densities confirm such a result. By comparing the abundance ratio of the pair C2H5CN/C2H3CN with the predictions of theoretical models, we derive that the age of our cores ranges between 3.7 and 5.9x10^{4} yrs. The abundances of C2H5CN and C2H3CN are strongly correlated, as expected from theory which predicts that C2H3CN is formed through gas phase reactions involving C2H5CN. A correlation is also found between the abundances of C2H3CN and CH3OCH3, and C2H5CN and CH3OCH3. In all tracers the fractional abundances increase with the H_2 column density while they are not correlated with the gas temperature.
Theoretical and numerical works indicate that a strong magnetic field should suppress fragmentation in dense cores. However, this has never been tested observationally in a relatively large sample of fragmenting massive dense cores. Here we use the polarization data obtained in the Submillimeter Array Legacy Survey of Zhang et al. to build a sample of 18 massive dense cores where both fragmentation and magnetic field properties are studied in a uniform way. We measured the fragmentation level, Nmm, within the field of view common to all regions, of 0.15 pc, with a mass sensitivity of about 0.5 Msun, and a spatial resolution of about 1000 au. In order to obtain the magnetic field strength using the Davis-Chandrasekhar-Fermi method, we estimated the dispersion of the polarization position angles, the velocity dispersion of the H13CO+(4-3) gas, and the density of each core, all averaged within 0.15 pc. A strong correlation is found between Nmm and the average density of the parental core, although with significant scatter. When large-scale systematic motions are separated from the velocity dispersion and only the small-scale (turbulent) contribution is taken into account, a tentative correlation is found between Nmm and the mass-to-flux ratio, as suggested by numerical and theoretical works.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا