No Arabic abstract
We surveyed 81 dense molecular cores associated with regions of massive star formation and Sgr A in the 5_{05}-4_{04} and 10_{010}-9_{09} lines of HNCO. Line emission was detected towards 57 objects. Selected subsamples were also observed in other HNCO lines covering a frequency range from 22 to 461 GHz. HNCO lines from the K_{-1} = 2,3 ladders were detected in several sources. Towards Orion-KL, K_{-1} = 5 transitions with upper state energies E_u/k ~ 1100 and 1300 K could be observed. Five HNCO cores were mapped. The sources remain spatially unresolved at 220 and 461 GHz with beam sizes of 24 and 18, respectively. Typical HNCO abundances relative to H_2 as derived from a population diagram analysis are ~ 10^{-9}. The rotational temperatures reach ~ 500 K. The gas densities in regions of HNCO $K_{-1}=0$ emission should be n > 10^6 cm^{-3} and in regions of K_{-1}>0 emission about an order of magnitude higher even for radiative excitation. HNCO abundances are found to be enhanced in high-velocity gas. HNCO integrated line intensities correlate well with those of thermal SiO emission. This indicates a spatial coexistence of the two species and may hint at a common production mechanism, presumably based on shock chemistry.
Chemical composition of the massive cores forming high-mass stars can put some constrains on the time scale of the massive star formation: sulphur chemistry is of specific interest due to its rapid evolution in warm gas and because the abundance of sulphur bearing species increases significantly with the temperature. Two mid-infrared quiet and two brighter massive cores are observed in various transitions (E_up up to 289K) of CS, OCS, H2S, SO, SO2 and of their isotopologues at mm wavelengths with the IRAM 30m and CSO telescopes. 1D modeling of the dust continuum is used to derive the density and temperature laws, which are then applied in the RATRAN code to model the observed line emission, and to derive the relative abundances of the molecules. All lines, except the highest energy SO2 transition, are detected. Infall (up to 2.9km/s) may be detected towards the core W43MM1. The inferred mass rate is 5.8-9.4 10^{-2} M_{odot}/yr. We propose an evolutionary sequence of our sources (W43MM1-IRAS18264-1152-IRAS05358+3543-IRAS18162-2048), based on the SED analysis. The analysis of the variations in abundance ratios from source to source reveals that the SO and SO2 relative abundances increase with time, while CS and OCS decrease. Molecular ratios, such as [OCS/H2S], [CS/H2S], [SO/OCS], [SO2/OCS], [CS/SO] and [SO2/SO] may be good indicators of evolution depending on layers probed by the observed molecular transitions. Observations of molecular emission from warmer layers, hence involving higher upper energy levels are mandatory to include.
Theoretical and numerical works indicate that a strong magnetic field should suppress fragmentation in dense cores. However, this has never been tested observationally in a relatively large sample of fragmenting massive dense cores. Here we use the polarization data obtained in the Submillimeter Array Legacy Survey of Zhang et al. to build a sample of 18 massive dense cores where both fragmentation and magnetic field properties are studied in a uniform way. We measured the fragmentation level, Nmm, within the field of view common to all regions, of 0.15 pc, with a mass sensitivity of about 0.5 Msun, and a spatial resolution of about 1000 au. In order to obtain the magnetic field strength using the Davis-Chandrasekhar-Fermi method, we estimated the dispersion of the polarization position angles, the velocity dispersion of the H13CO+(4-3) gas, and the density of each core, all averaged within 0.15 pc. A strong correlation is found between Nmm and the average density of the parental core, although with significant scatter. When large-scale systematic motions are separated from the velocity dispersion and only the small-scale (turbulent) contribution is taken into account, a tentative correlation is found between Nmm and the mass-to-flux ratio, as suggested by numerical and theoretical works.
We present Plateau de Bure interferometer observations obtained in continuum at 1.3 and 3.5 mm towards the six most massive and young (IR-quiet) dense cores in Cygnus X. Located at only 1.7 kpc, the Cygnus X region offers the opportunity of reaching small enough scales (of the order of 1700 AU at 1.3 mm) to separate individual collapsing objects. The cores are sub-fragmented with a total of 23 fragments inside 5 cores. Only the most compact core, CygX-N63, could actually be a single massive protostar with an envelope mass as large as 60 Msun. The fragments in the other cores have sizes and separations similar to low-mass pre-stellar and proto-stellar condensations in nearby protoclusters, and are probably of the same nature. A total of 9 out of these 23 protostellar objects are found to be probable precursors of OB stars with envelope masses ranging from 6 to 23 Msun. The level of fragmentation is globally higher than in the turbulence regulated, monolithic collapse scenario, but is not as high as expected in a pure gravo-turbulent scenario where the distribution of mass is dominated by low-mass protostars/stars. Here, the fractions of the total core masses in the high-mass fragments are reaching values as high as 28, 44, and 100 % in CygX-N12, CygX-N53, and CygX-N63, respectively, much higher than what an IMF-like mass distribution would predict. The increase of the fragmentation efficiency as a function of density in the cores is proposed to be due to the increasing importance of self-gravity leading to gravitational collapse at the scale of the dense cores. At the same time, the cores tend to fragment into a few massive protostars within their central regions. We are therefore probably witnessing here the primordial mass segregation of clusters in formation.
We report new calculations of interstellar 15N fractionation. Previously, we have shown that large enhancements of 15N/14N can occur in cold, dense gas where CO is frozen out, but that the existence of an NH + N channel in the dissociative recombination of N2H+ severely curtails the fractionation. In the light of recent experimental evidence that this channel is in fact negligible, we have reassessed the 15N chemistry in dense cloud cores. We consider the effects of temperatures below 10 K, and of the presence of large amounts of atomic nitrogen. We also show how the temporal evolution of gas-phase isotope ratios is preserved as spatial heterogeneity in ammonia ice mantles, as monolayers deposited at different times have different isotopic compositions. We demonstrate that the upper layers of this ice may have 15N/14N ratios an order of magnitude larger than the underlying elemental value. Converting our ratios to delta-values, we obtain delta(15N) > 3,000 per mil in the uppermost layer, with values as high as 10,000 per mil in some models. We suggest that this material is the precursor to the 15N `hotspots recently discovered in meteorites and IDPs
We aim at characterising dense cores in the clustered environments associated with massive star-forming regions. For this, we present an uniform analysis of VLA NH3(1,1) and (2,2) observations towards a sample of 15 massive star-forming regions, where we identify a total of 73 cores, classify them as protostellar, quiescent starless, or perturbed starless, and derive some physical properties. The average sizes and ammonia column densities are 0.06 pc and 10^15 cm^-2, respectively, with no significant differences between the starless and protostellar cores, while the linewidth and rotational temperature of quiescent starless cores are smaller, 1.0 km/s and 16 K, than those of protostellar (1.8 km/s, 21 K), and perturbed starless (1.4 km/s, 19 K) cores. Such linewidths and temperatures for these quiescent starless cores in the surroundings of massive stars are still significantly larger than the typical values measured in starless cores of low-mass star-forming regions, implying an important non-thermal component. We confirm at high angular resolutions the correlations previously found with single-dish telescopes between the linewidth, the temperature of the cores, and the bolometric luminosity. In addition, we find a correlation between the temperature of each core and the incident flux from the most massive star in the cluster, suggesting that the large temperatures measured in the starless cores of our sample could be due to heating from the nearby massive star. A simple virial equilibrium analysis seems to suggest a scenario of a self-similar, self-graviting, turbulent, virialised hierarchy of structures from clumps (0.1-10 pc) to cores (0.05 pc). A closer inspection of the dynamical state taking into account external pressure effects, reveal that relatively strong magnetic field support may be needed to stabilise the cores, or that they are unstable and thus on the verge of collapse.