Do you want to publish a course? Click here

Magnetic state electrical readout of Mn12 molecules

109   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that the different magnetic states of a Mn12 molecule can be distinguished in a two-probe transport experiment from a complete knowledge of the current-voltage curve. Our results, obtained with state-of-the-art non-equilibrium transport methods combined with density functional theory, demonstrate that spin configuration-specific negative differential resistances (NDRs) appear in the I-V curves. These originate from the interplay between electron localization and the re-hybridization of the molecular levels in an external electric field and allow the detection of the molecules spin-state.



rate research

Read More

116 - S. McHugh , Bo Wen , Xiang Ma 2009
Using micron-sized Hall sensor arrays to obtain time-resolved measurements of the local magnetization, we report a systematic study in the molecular magnet Mn$_{12}$-acetate of magnetic avalanches controllably triggered in different fixed external magnetic fields and for different values of the initial magnetization. The speeds of propagation of the spin-reversal fronts are in good overall agreement with the theory of magnetic deflagration of Garanin and Chudnovsky cite{Garanin}.
Using micron-sized thermometers and Hall bars, we report time-resolved studies of the local temperature and local magnetization for two types of magnetic avalanches (abrupt spin reversals) in the molecular magneti Mn12-acetate, corresponding to avalanches of the main slow-relaxing crystalline form and avalanches of the fast-relaxing minor species that exists in all as-grown crystals of this material. An experimental protocol is used that allows the study of each type of avalanche without triggering avalanches in the other, and of both types of avalanches simultaneously. In samples prepared magnetically to enable both types of avalanches, minor species avalanches are found to act as a catalyst for the major species avalanches. magnetically to enable both types of avalanches, minor species avalanches are found to act as a catalyst for the major species avalanches.
Electrical manipulation of emergent phenomena due to nontrivial band topology is a key to realize next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles. It exhibits various exotic phenomena such as large anomalous Hall effect (AHE) and chiral anomaly, which have robust properties due to the topologically protected Weyl nodes. To manipulate such phenomena, the magnetic version of Weyl semimetals would be useful as a magnetic texture may provide a handle for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, given the prospects of antiferromagnetic (AF) spintronics for realizing high-density devices with ultrafast operation, it would be ideal if one could electrically manipulate an AF Weyl metal. However, no report has appeared on the electrical manipulation of a Weyl metal. Here we demonstrate the electrical switching of a topological AF state and its detection by AHE at room temperature. In particular, we employ a polycrystalline thin film of the AF Weyl metal Mn$_3$Sn, which exhibits zero-field AHE. Using the bilayer device of Mn$_3$Sn and nonmagnetic metals (NMs), we find that an electrical current density of $sim 10^{10}$-$10^{11}$ A/m$^2$ in NMs induces the magnetic switching with a large change in Hall voltage, and besides, the current polarity along a bias field and the sign of the spin Hall angle $theta_{rm SH}$ of NMs [Pt ($theta_{rm SH} > 0$), Cu($theta_{rm SH} sim 0$), W ($theta_{rm SH} < 0$)] determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is made using the same protocol as the one used for ferromagnetic metals. Our observation may well lead to another leap in science and technology for topological magnetism and AF spintronics.
72 - Y. G. Zhao , W. Cai , X. S. Wu 2004
Nanostructured La0.67Ca0.33MnO3 (NS-LCMO) was formed by pulsed-laser deposition on the surface of porous Al2O3. The resistance peak temperature (Tp) of the NS-LCMO increases with increasing average thickness of the films, while their Curie temperatures (Tc) remain unchanged. The coercive field of the samples increases with decreasing film thickness and its temperature dependence can be well described by Hc(T) = Hc(0)[1-(T/TB)1/2]. A large magnetoresistance and strong memory effect were observed for the NS-LCMO. The results are discussed in terms of the size effect, Coulomb blockade and magnetic tunneling effect. This work also demonstrates a new way to get nanostructured manganites.
109 - V. Meenakshi 2004
Films of the molecular nanomagnet, Mn12-acetate, have been deposited using pulsed laser deposition and a novel variant, matrix assisted pulsed laser evaporation. The films have been characterized by X-ray photoelectron spectroscopy, mass spectrometry and magnetic hysteresis. The results indicate that an increase in laser energy and/or pulse frequency leads to fragmentation of Mn12, whereas its chemical and magnetic integrity is preserved at low laser energy (200 mJ). This technique allows the fabrication of patterned thin film systems of molecular nanomagnets for fundamental and applied experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا