Do you want to publish a course? Click here

Method of Power Recycling in Co-Axial Mach Zender Interferometers for Low Noise Measurements

216   0   0.0 ( 0 )
 Added by Stephen Parker
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first experimental study of a new type of power recycling microwave interferometer designed for low noise measurements. This system enhances sensitivity to phase fluctuations in a Device Under Test, independent of input power levels. The single sideband thermal white phase noise floor of the system has been lowered by 8 dB (reaching -185 dBc/Hz at 1 kHz offset frequency) at relatively low power levels (13 dBm).



rate research

Read More

The sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is a material property characterized by the mechanical loss angle. We have identified mixtures of titanium dioxide (TiO$_2$) and germanium dioxide (GeO$_2$) that show internal dissipations at a level of 1 $times 10^{-4}$, low enough to provide almost a factor of two improvement on the level of Brownian noise with respect to the state-of-the-art materials. We show that by using a mixture of 44% TiO$_2$ and 56% GeO$_2$ in the high refractive index layers of the interferometer mirrors, it would be possible to achieve a thermal noise level in line with the design requirements. These results are a crucial step forward to produce the mirrors needed to meet the thermal noise requirements for the planned upgrades of the Advanced LIGO and Virgo detectors.
229 - B. Blank , P. Ascher , M. Gerbaux 2020
Following work done in the energy region above 100 keV, the high-precision calibration of a co-axial high-purity germanium detector has been continued in the energy region below 100 keV. Previous measurements or Monte-Carlo simulations have been repeated with higher statistics and new source measurements have been added. A precision as in the high-energy part, i.e. an absolute precision for the detection efficiency of 0.2%, has been reached. The low-energy behaviour of the germanium detector was further scrutinized by studying the germanium X-ray escape probability for the detection of low-energy photons. In addition, one experimental point, a gamma ray at 2168 keV from the decay of 38K, has been included for the total-to-peak ratios agreeing well with simulations. The same gamma ray was also added for the single- and double-escape probabilities. Finally, the long term stability of the efficiency of the germanium detector was investigated by regularly measuring the full-energy peak efficiency with a precisely calibrated 60Co source and found to be perfectly stable over a period of 10 years.
113 - Y. Akiyama , T. Akutsu , M. Ando 2019
A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main stages allows for achieving sufficient damping performance with a simple feedback as well as vibration isolation ratio. Three Type-Bp systems were installed in KAGRA, and were proved to satisfy the requirements on the damping performance, and also on estimated residual displacement of the optics.
We report an accurate measurement of the phase noise of a thermally limited electronic oscillator at 300 K. By thermally limited we mean that the white signal-to-noise ratio of the oscillator is at or near the level generated by the thermal noise of the 50 ohm source resistor. The measurement is devoid of the anti-correlation effect that originates from the common mode power splitter in a cross-spectrum technique. The anti-correlation effect is mitigated by cooling the power splitter to a liquid helium temperature (4 K). The measurements in this paper are the first proof of theoretical claims that additive thermal noise from the splitter can be reduced significantly with cryogenic cooling and this can eliminate any anti-correlated noise introduced by use of the two-channel cross-spectrum technique. We also confirm measurements of partial anti-correlation error of (-1.3 +/- 0.6) dB that agree with theory when the splitter is at liquid nitrogen temperature of 77 K.
147 - B. Blank , J. Souin , P. Ascher 2014
A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and gamma-ray source measurements have been compared to Monte-Carlo simulations to adjust the dimensions of a detector model. For this purpose, standard calibration sources and short-lived on-line sources have been used. The resulting efficiency calibration reaches the precision needed e.g. for branching ratio measurements of super-allowed beta decays for tests of the weak-interaction standard model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا