Do you want to publish a course? Click here

Low mechanical loss TiO$_2$:GeO$_2$ coatings for reduced thermal noise in Gravitational Wave Interferometers

300   0   0.0 ( 0 )
 Added by Gabriele Vajente
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is a material property characterized by the mechanical loss angle. We have identified mixtures of titanium dioxide (TiO$_2$) and germanium dioxide (GeO$_2$) that show internal dissipations at a level of 1 $times 10^{-4}$, low enough to provide almost a factor of two improvement on the level of Brownian noise with respect to the state-of-the-art materials. We show that by using a mixture of 44% TiO$_2$ and 56% GeO$_2$ in the high refractive index layers of the interferometer mirrors, it would be possible to achieve a thermal noise level in line with the design requirements. These results are a crucial step forward to produce the mirrors needed to meet the thermal noise requirements for the planned upgrades of the Advanced LIGO and Virgo detectors.

rate research

Read More

129 - N. Demos , M. Granata , S. Gras 2021
Brownian thermal noise associated with highly-reflective mirror coatings is a fundamental limit for several precision experiments, including gravitational-wave detectors. Recently, there has been a worldwide effort to find mirror coatings with improved thermal noise properties that also fulfill strict optical requirements such as low absorption and scatter. We report on the optical and mechanical properties of ion-beam-sputtered niobia and titania-niobia thin films, and we discuss application of such coatings in current and future gravitational-wave detectors. We also report an updated direct coating thermal noise measurement of the HR coatings used in Advanced LIGO and Advanced Virgo.
We report on the results of an extensive campaign of optical and mechanical characterization of the ion-beam sputtered oxide layers (Ta$_2$O$_5$, TiO$_2$, Ta$_2$O$_5$-TiO$_2$, SiO$_2$) within the high-reflection coatings of the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors: refractive index, thickness, optical absorption, composition, density, internal friction and elastic constants have been measured; the impact of deposition rate and post-deposition annealing on coating internal friction has been assessed. For Ta$_2$O$_5$ and SiO$_2$ layers, coating internal friction increases with the deposition rate, whereas the annealing treatment either erases or largely reduces the gap between samples with different deposition history. For Ta$_2$O$_5$-TiO$_2$ layers, the reduction of internal friction due to TiO$_2$ doping becomes effective only if coupled with annealing. All measured samples showed a weak dependence of internal friction on frequency ($phi_c(f) = af^{b}$, with $-0.208 < b < 0.140$ depending on the coating material considered). SiO$_2$ films showed a mode-dependent loss branching, likely due to spurious losses at the coated edge of the samples. The reference loss values of the Advanced LIGO and Advanced Virgo input (ITM) and end (ETM) mirror HR coatings have been updated by using our estimated value of Youngs modulus of Ta$_2$O$_5$-TiO$_2$ layers (120 GPa) and are about 10% higher than previous estimations.
Amorphous oxide thin films play a fundamental role in state-of-the art interferometry experiments, such as gravitational wave detectors where these films compose the high reflectance mirrors of end and input masses. The sensitivity of these detectors is affected by thermal noise in the mirrors with its main source being the mechanical loss of the high index layers. These thermally driven fluctuations are a fundamental limit to optical interferometry experiments and there is a pressing need to understand the underlying processes that lead to mechanical dissipation in materials at room temperature. Two strategies are known to lower the mechanical loss: employing a mixture of Ta$_2$O$_5$ with $approx$ 20% of TiO$_2$ and post-deposition annealing, but the reasons behind this are not completely understood. In this work, we present a systematic study of the structural and optical properties of ion beam sputtered TiO$_2$-doped Ta$_2$O$_5$ films as a function of the annealing temperature. We show for the first time that low mechanical loss is associated with a material morphology that consists of nanometer sized Ar-rich bubbles embedded into an atomically homogeneous mixed titanium-tantalum oxide. When the Ti cation ratio is high, however, phase separation occurs in the film which leads to increased mechanical loss. These results indicate that for designing low mechanical loss mixed oxide coatings for interferometry applications it would be beneficial to identify materials with the ability to form ternary compounds while the dopant ratio needs to be kept low to avoid phase separation.
Coating thermal noise is a fundamental limit for precision experiments based on optical and quantum transducers. In this review, after a brief overview of the techniques for coating thermal noise measurements, we present the latest world-wide research activity on low-noise coatings, with a focus on the results obtained at the Laboratoire des Mat{e}riaux Avanc{e}s. We report new updated values for the Ta$_2$O$_5$, Ta$_2$O$_5$-TiO$_2$ and SiO$_2$ coatings of the Advanced LIGO, Advanced Virgo and KAGRA detectors, and new results from sputtered Nb$_2$O$_5$, TiO$_2$-Nb$_2$O$_5$, Ta$_2$O$_5$-ZrO$_2$, MgF$_2$, AlF$_3$ and silicon nitride coatings. Amorphous silicon, crystalline coatings, high-temperature deposition, multi-material coatings and composite layers are also briefly discussed, together with the latest developments of structural analyses and models.
We present the results of mechanical characterizations of many different high-quality optical coatings made of ion-beam-sputtered titania-doped tantala and silica, developed originally for interferometric gravitational-wave detectors. Our data show that in multi-layer stacks (like high-reflection Bragg mirrors, for example) the measured coating dissipation is systematically higher than the expectation and is correlated with the stress condition in the sample. This has a particular relevance for the noise budget of current advanced gravitational-wave interferometers, and, more generally, for any experiment involving thermal-noise limited optical cavities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا