No Arabic abstract
We analyzed the metal distribution of the Cygnus Loop using 14 and 7 pointings observation data obtained by the textit{Suzaku} and the textit{XMM-Newton} observatories. The spectral analysis shows that all the spectra are well fitted by the two-$kT_e$ non-equilibrium ionization plasma model as shown by the earlier observations. From the best-fit parameters of the high-$kT_e$ component, we calculated the emission measures about various elements and showed the metal distribution of the ejecta component. We found that the distributions of Si and Fe are centered at the southwest of the geometric center toward the blow-out region. From the best-fit parameters, we also estimated the progenitor mass of the Cygnus Loop from our field of view and the metal rich region with a radius of 25 arcmin from the metal center. The result from the metal circle is similar to that from our entire FOV, which suggests the mixing of the metal. From the results, we estimated the mass of the progenitor star at 12-15MO.
We observed a linearly sliced area of the Cygnus Loop from the north-east to the south-west with Suzaku in seven pointings. After dividing the entire fields of view (FOV) into 119 cells, we extracted spectra from all of the cells and performed spectral analysis for them. We then applied both one- and two-component non-equilibrium ionization (NEI) models for all of the spectra, finding that almost all were significantly better fitted by the two-component NEI model rather than the one-component NEI model. Judging from the abundances, the high-kT_e component must be the ejecta component, while the low-kT_e component comes from the swept-up matter. Therefore, the ejecta turn out to be distributed inside a large area (at least our FOV) of the Cygnus Loop. We divided the entire FOV into northern and southern parts, and found that the ejecta distributions were asymmetric to the geometric center: the ejecta of Si, S, and Fe seem to be distributed more in the south than in the north of the Cygnus Loop by a factor of about 2. The degree of ejecta-asymmetry is consistent with that expected by recent supernova explosion models.
We present the C III {lambda}977, O VI {lambda}{lambda}1032, 1038 and N IV] {lambda}1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 {AA} are resolved into two separate emission lines, whose intensity demonstrates a relatively high Si IV region predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images, reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities; and the effects of resonance scattering, X-ray emitting gas, and non-radiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.
Recent dynamical analysis based on Gaia data have revealed major accretion events in Milky Ways history. Nevertheless, our understanding of the primordial Galaxy is hindered because the bona fide identification of the most metal-poor and correspondently oldest accreted stars remains challenging. Contrary to alpha-elements, neutron-capture elements present unexplained large abundance spreads for low metallicity stars, that could result from a mixture of formation sites. We have analysed the abundances of yttrium, europium, magnesium and iron in Milky Way satellite galaxies, field halo stars and globular clusters. The chemical information has been complemented with orbital parameters based on Gaia data. In particular, the orbits average inclination has been considered. The [Y/Eu] abundance behaviour with respect to the [Mg/Fe] turnovers for satellite galaxies of different masses reveals that higher luminosity systems, for which the [Mg/Fe] abundance declines at higher metallicities, present enhanced [Y/Eu] abundances, particularly in the [Fe/H] regime between -2.25 and -1.25 dex. In addition, the analysis has uncovered a chemo-dynamical correlation for both globular clusters and field stars of the Galactic halo, accounting for about half of the [Y/Eu] abundance spread. [Y/Eu] under-abundances typical of protracted chemical evolutions, are preferentially observed in polar-like orbits, pointing to a possible anisotropy in the accretion processes. Our results strongly suggest that the observed [Y/Eu] abundance spread in the Milky Way halo could result from a mixture of systems with different masses. They also highlight that both nature and nurture are relevant to the Milky Way formation, since its primordial epochs, opening new pathways for chemical diagnostics of our Galaxy building up.
We report on spectra of two positions in the XA region of the Cygnus Loop supernova remnant obtained with the InfraRed Spectrograph on the Spitzer Space Telescope. The spectra span the 10-35 micron wavelength range, which contains a number of collisionally excited forbidden lines. These data are supplemented by optical spectra obtained at the Whipple Observatory and an archival UV spectrum from the International Ultraviolet Explorer. Coverage from the UV through the IR provides tests of shock wave models and tight constraints on model parameters. Only lines from high ionization species are detected in the spectrum of a filament on the edge of the remnant. The filament traces a 180 km/s shock that has just begun to cool, and the oxygen to neon abundance ratio lies in the normal range found for Galactic H II regions. Lines from both high and low ionization species are detected in the spectrum of the cusp of a shock-cloud interaction, which lies within the remnant boundary. The spectrum of the cusp region is matched by a shock of about 150 km/s that has cooled and begun to recombine. The post-shock region has a swept-up column density of about 1.3E18 cm^-2, and the gas has reached a temperature of 7000 to 8000 K. The spectrum of the Cusp indicates that roughly half of the refractory silicon and iron atoms have been liberated from the grains. Dust emission is not detected at either position.
We report on the continuum and polarization observations of the Cygnus Loop supernova remnant (SNR) conducted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST). FAST observations provide high angular resolution and high sensitivity images of the SNR, which will help to disentangle its nature. We obtained Stokes I, Q and U maps over the frequency range of 1.03 - 1.46 GHz split into channels of 7.63 kHz. The original angular resolution is in the range of ~3 arcmin - ~3.8 arcmin, and we combined all the data at a common resolution of 4 arcmin. The temperature scale of the total intensity and the spectral index from the in-band temperature-temperature plot are consistent with previous observations, which validates the data calibration and map-making procedures. The rms sensitivity for the band-averaged total-intensity map is about 20 mK in brightness temperature, which is at the level of confusion limit. For the first time, we apply rotation measure (RM) synthesis to the Cygnus Loop to obtain the polarization intensity and RM maps. The rms sensitivity for polarization is about 5 mK, far below the total-intensity confusion limit. We also obtained RMs of eight extra-galactic sources, and demonstrate that the wide-band frequency coverage helps to overcome the ambiguity of RM determinations.