Do you want to publish a course? Click here

Global Far-Ultraviolet Properties of the Cygnus Loop

128   0   0.0 ( 0 )
 Added by il-Joong Kim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the C III {lambda}977, O VI {lambda}{lambda}1032, 1038 and N IV] {lambda}1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 {AA} are resolved into two separate emission lines, whose intensity demonstrates a relatively high Si IV region predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images, reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities; and the effects of resonance scattering, X-ray emitting gas, and non-radiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.



rate research

Read More

72 - S. R. Kulkarni 2021
The diffuse far-ultraviolet (FUV) background has received considerable attention from astronomers since the seventies. The initial impetus came from the hope of detecting UV radiation from the hot intergalactic medium. The central importance of the FUV background to the physics (heating and ionization) of the diffuse atomic phases motivated the next generation of experiments. The consensus view is that the diffuse FUV emission at high latitudes has three components: stellar FUV reflected by dust grains (diffuse galactic light or DGL), FUV from other galaxies (extra-galactic background light, EBL) and a component of unknown origin. During the eighties, there was some discussion that decaying dark matter particles produced FUV radiation. In this paper I investigate production of FUV photons by conventional sources: the Galactic Hot Ionized Medium (line emission), two photon emission from the Galactic Warm Ionized Medium and low-velocity shocks, and Lyman-beta excitation of hydrogen at several locales in the Solar System (the interplanetary medium, the exosphere and thermosphere of Earth). I conclude that two thirds of the third component can be explained by the sum of the processes listed above.
We present all-sky maps of two major FUV cooling lines, C IV and O VI, of highly ionized gas to investigate the nature of the transition-temperature gas. From the extinction-corrected line intensities of C IV and O VI, we calculated the gas temperature and the emission measure of the transition-temperature gas assuming isothermal plasma in the collisional ionization equilibrium. The gas temperature was found to be more or less uniform throughout the Galaxy with a value of (1.89 $pm$ 0.06) $times$ $10^5$ K. The emission measure of the transition-temperature gas is described well by a disk-like model in which the scale height of the electron density is $z_0=6_{-2}^{+3}$ kpc. The total mass of the transition-temperature gas is estimated to be approximately $6.4_{-2.8}^{+5.2}times10^9 M_{bigodot}$. We also calculated the volume-filling fraction of the transition-temperature gas, which was estimated to be $f=0.26pm0.09$, and varies from $fsim0.37$ in the inner Galaxy to $fsim0.18$ in the outer Galaxy. The spatial distribution of C IV and O VI cannot be explained by a simple supernova remnant model or a three-phase model. The combined effects of supernova remnants and turbulent mixing layers can explain the intensity ratio of C IV and O VI. Thermal conduction front models and high-velocity cloud models are also consistent with our observation.
We have obtained a contiguous set of long-slit spectra of a shock wave in the Cygnus Loop to investigate its structure, which is far from the morphology predicted by 1D models. Proper motions from Hubble Space Telescope images combined with the known distance to the Cygnus Loop provide an accurate shock speed. Earlier analyses of shock spectra estimated the shock speed, postshock density, temperature, and elemental abundances. In this paper we determine several more shock parameters: a more accurate shock speed, ram pressure, density, compression ratio, dust destruction efficiency, magnetic field strength, and vorticity in the cooling region. From the derived shock properties we estimate the emissivities of synchrotron emission in the radio and pion decay emission in the gamma rays. Both are consistent with the observations if we assume simple adiabatic compression of ambient cosmic rays as in the van der Laan mechanism. We also find that, although the morphology is far from that predicted by 1D models and the line ratios vary dramatically from point to point, the average spectrum is matched reasonably well by 1D shock models with the shock speed derived from the measured proper motion. A subsequent paper will analyze the development of turbulence in the cooling zone behind the shock.
We analyzed the metal distribution of the Cygnus Loop using 14 and 7 pointings observation data obtained by the textit{Suzaku} and the textit{XMM-Newton} observatories. The spectral analysis shows that all the spectra are well fitted by the two-$kT_e$ non-equilibrium ionization plasma model as shown by the earlier observations. From the best-fit parameters of the high-$kT_e$ component, we calculated the emission measures about various elements and showed the metal distribution of the ejecta component. We found that the distributions of Si and Fe are centered at the southwest of the geometric center toward the blow-out region. From the best-fit parameters, we also estimated the progenitor mass of the Cygnus Loop from our field of view and the metal rich region with a radius of 25 arcmin from the metal center. The result from the metal circle is similar to that from our entire FOV, which suggests the mixing of the metal. From the results, we estimated the mass of the progenitor star at 12-15MO.
We present the general properties of the far-ultraviolet (FUV; 1370-1720A) continuum background over most of the sky, obtained with the Spectroscopy of Plasma Evolution from Astrophysical Radiation instrument (SPEAR, also known as FIMS), flown aboard the STSAT-1 satellite mission. We find that the diffuse FUV continuum intensity is well correlated with N_{HI}, 100 $mu$m, and H-alpha intensities but anti-correlated with soft X-ray. The correlation of the diffuse background with the direct stellar flux is weaker than the correlation with other parameters. The continuum spectra are relatively flat. However, a weak softening of the FUV spectra toward some sight lines, mostly at high Galactic latitudes, is found not only in direct-stellar but also in diffuse background spectra. The diffuse background is relatively softer that the direct stellar spectrum. We also find that the diffuse FUV background averaged over the sky has about the same level as the direct-stellar radiation field in the statistical sense and a bit softer spectrum compared to direct stellar radiation. A map of the ratio of 1400-1510A to 1560-1660A shows that the sky is divided into roughly two parts. However, this map shows a lot of patchy structures on small scales. The spatial variation of the hardness ratio seems to be largely determined by the longitudinal distribution of spectral types of stars in the Galactic plane. A correlation of the hardness ratio with the FUV intensity at high intensities is found but an anti-correlation at low intensities. We also find evidence that the FUV intensity distribution is log-normal in nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا