Do you want to publish a course? Click here

The heavy-elements heritage of the falling sky

147   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent dynamical analysis based on Gaia data have revealed major accretion events in Milky Ways history. Nevertheless, our understanding of the primordial Galaxy is hindered because the bona fide identification of the most metal-poor and correspondently oldest accreted stars remains challenging. Contrary to alpha-elements, neutron-capture elements present unexplained large abundance spreads for low metallicity stars, that could result from a mixture of formation sites. We have analysed the abundances of yttrium, europium, magnesium and iron in Milky Way satellite galaxies, field halo stars and globular clusters. The chemical information has been complemented with orbital parameters based on Gaia data. In particular, the orbits average inclination has been considered. The [Y/Eu] abundance behaviour with respect to the [Mg/Fe] turnovers for satellite galaxies of different masses reveals that higher luminosity systems, for which the [Mg/Fe] abundance declines at higher metallicities, present enhanced [Y/Eu] abundances, particularly in the [Fe/H] regime between -2.25 and -1.25 dex. In addition, the analysis has uncovered a chemo-dynamical correlation for both globular clusters and field stars of the Galactic halo, accounting for about half of the [Y/Eu] abundance spread. [Y/Eu] under-abundances typical of protracted chemical evolutions, are preferentially observed in polar-like orbits, pointing to a possible anisotropy in the accretion processes. Our results strongly suggest that the observed [Y/Eu] abundance spread in the Milky Way halo could result from a mixture of systems with different masses. They also highlight that both nature and nurture are relevant to the Milky Way formation, since its primordial epochs, opening new pathways for chemical diagnostics of our Galaxy building up.



rate research

Read More

We analyzed the metal distribution of the Cygnus Loop using 14 and 7 pointings observation data obtained by the textit{Suzaku} and the textit{XMM-Newton} observatories. The spectral analysis shows that all the spectra are well fitted by the two-$kT_e$ non-equilibrium ionization plasma model as shown by the earlier observations. From the best-fit parameters of the high-$kT_e$ component, we calculated the emission measures about various elements and showed the metal distribution of the ejecta component. We found that the distributions of Si and Fe are centered at the southwest of the geometric center toward the blow-out region. From the best-fit parameters, we also estimated the progenitor mass of the Cygnus Loop from our field of view and the metal rich region with a radius of 25 arcmin from the metal center. The result from the metal circle is similar to that from our entire FOV, which suggests the mixing of the metal. From the results, we estimated the mass of the progenitor star at 12-15MO.
The origin and fate of the most extended extragalactic neutral cloud known in the local Universe, the Leo ring, is still debated 38 years after its discovery. Its existence is alternatively attributed to leftover primordial gas with some low level of metal pollution versus enriched gas stripped during a galaxy-galaxy encounter. Taking advantage of MUSE (Multi Unit Spectroscopic Explorer) operating at the VLT, we performed optical integral field spectroscopy of 3 HI clumps in the Leo ring where ultraviolet continuum emission has been found. We detected, for the first time, ionized hydrogen in the ring and identify 4 nebular regions powered by massive stars. These nebulae show several metal lines ([OIII],[NII],[SII]) which allowed reliable measures of metallicities, found to be close to or above the solar value. Given the faintness of the diffuse stellar counterparts, less than 3 percent of the observed heavy elements could have been produced locally in the main body of the ring and not much more than 15 percent in the HI clump towards M96. This inference, and the chemical homogeneity among the regions, convincingly demonstrates that the gas in the ring is not primordial, but has been pre-enriched in a galaxy disk, then later removed and shaped by tidal forces and it is forming a sparse population of stars.
Our Sun and planetary system were born about 4.5 billion years ago. How did this happen and what is our heritage from these early times? This review tries to address these questions from an astrochemical point of view. On the one hand, we have some crucial information from meteorites, comets and other small bodies of the Solar System. On the other hand, we have the results of studies on the formation process of Sun-like stars in our Galaxy. These results tell us that Sun-like stars form in dense regions of molecular clouds and that three major steps are involved before the planet formation period. They are represented by the pre-stellar core, protostellar envelope and protoplanetary disk phases. Simultaneously with the evolution from one phase to the other, the chemical composition gains increasing complexity. In this review, we first present the information on the chemical composition of meteorites, comets and other small bodies of the Solar System, which is potentially linked to the first phases of the Solar Systems formation. Then we describe the observed chemical composition in the pre-stellar core, protostellar envelope and protoplanetary disk phases, including the processes that lead to them. Finally, we draw together pieces from the different objects and phases to understand whether and how much we inherited chemically from the time of the Suns birth.
Primordial molecules were formed during the Dark Ages, i.e. the time between recombination and reionization in the early Universe. The purpose of this article is to analyze the formation of primordial molecules based on heavy elements during the Dark Ages, with elemental abundances taken from different nucleosynthesis models. We present calculations of the full non-linear equation set governing the primordial chemistry. We consider the evolution of 45 chemical species and use an implicit multistep method of variable order of precision with an adaptive stepsize control. We find that the most abundant Dark Ages molecules based on heavy elements are CH and OH. Non-standard nucleosynthesis can lead to higher heavy element abundances while still satisfying the observed primordial light abundances. In that case, we show that the abundances of molecular species based on C, N, O and F can be enhanced by two orders of magnitude compared to the standard case, leading to a CH relative abundance higher than that of HD+ or H2D+.
Context: Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the PL relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use HR spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), alpha (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the NIR enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement with previous studies on either Cepheids or other tracers. In particular, we confirm an upward shift of approximatively 0.2 dex for the Mg abundances, as has recently been reported. We also confirm the existence of a gradient for all the heavy elements studied in the context of a LTE analysis. However, for Y, Nd, and especially La, we find lower abundances for Cepheids in the outer disk than reported in previous studies, leading to steeper gradients. This effect can be explained by the differences in the line lists used by different groups. Conclusions: Our data do not support a flattening of the gradients in the outer disk, in agreement with recent Cepheid studies and chemo-dynamical simulations. This is in contrast to the open cluster observations but remains compatible with a picture where the transition zone between the inner disk and the outer disk would move outward with time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا