Do you want to publish a course? Click here

Pressure and alloying effects on the metal to insulator transition in NiS{2-x}Se{x} studied by infrared spectroscopy

141   0   0.0 ( 0 )
 Added by Andrea Perucchi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The metal to insulator transition in the charge transfer NiS{2-x}Se{x} compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se-alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs Pressure scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.



rate research

Read More

The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.
We report on a combined measurement of high-resolution x-ray diffraction on powder and Raman scattering on single crystalline NiS2-xSex samples that exhibit the insulator-metal transition with Se doping. Via x-rays, an abrupt change in the bond length between Ni and S (Se) ions was observed at the transition temperature, in sharp contrast to the almost constant bond length between chalcogen ions. Raman scattering, a complementary technique with the unique sensitivity to the vibrations of chalcogen bonds, revealed no anomalies in the phonon spectrum, consistent with the x-ray diffraction results. This indicates the important role of the interaction between Ni and S (Se) in the insulator-metal transition. The potential implication of this interpretation is discussed in terms of current theoretical models.
We present angle resolved photoemission (ARPES) data on Na-doped Ca$_2$CuO$_2$Cl$_2$. We demonstrate that the chemical potential shifts upon doping the system across the insulator to metal transition. The resulting low energy spectra reveal a gap structure which appears to deviate from the canonical $d_{x2-y2} ~ |cos(k_x a)-cos(k_y a)|$ form. To reconcile the measured gap structure with d-wave superconductivity one can understand the data in terms of two gaps, a very small one contributing to the nodal region and a very large one dominating the anti-nodal region. The latter is a result of the electronic structure observed in the undoped antiferromagnetic insulator. Furthermore, the low energy electronic structure of the metallic sample contains a two component structure in the nodal direction, and a change in velocity of the dispersion in the nodal direction at roughly 50 meV. We discuss these results in connection with photoemission data on other cuprate systems.
Pressure dependence of the electronic and crystal structures of K$_{x}$Fe$_{2-y}$Se$_{2}$, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Present results here show that the nesting condition plays a key role in stabilizing the superconducting state helping to address outstanding fundamental question as to why the SC II appears under pressure.
We present a detailed infrared study of the insulator-to-metal transition (IMT) in vanadium dioxide (VO2) thin films. Conventional infrared spectroscopy was employed to investigate the IMT in the far-field. Scanning near-field infrared microscopy directly revealed the percolative IMT with increasing temperature. We confirmed that the phase transition is also percolative with cooling across the IMT. We present extensive near-field infrared images of phase coexistence in the IMT regime in VO2. We find that the coexisting insulating and metallic regions at a fixed temperature are static on the time scale of our measurements. A novel approach for analyzing the far-field and near-field infrared data within the Bruggeman effective medium theory was employed to extract the optical constants of the incipient metallic puddles at the onset of the IMT. We found divergent effective carrier mass in the metallic puddles that demonstrates the importance of electronic correlations to the IMT in VO2. We employ the extended dipole model for a quantitative analysis of the observed near-field infrared amplitude contrast and compare the results with those obtained with the basic dipole model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا