We present a detailed infrared study of the insulator-to-metal transition (IMT) in vanadium dioxide (VO2) thin films. Conventional infrared spectroscopy was employed to investigate the IMT in the far-field. Scanning near-field infrared microscopy directly revealed the percolative IMT with increasing temperature. We confirmed that the phase transition is also percolative with cooling across the IMT. We present extensive near-field infrared images of phase coexistence in the IMT regime in VO2. We find that the coexisting insulating and metallic regions at a fixed temperature are static on the time scale of our measurements. A novel approach for analyzing the far-field and near-field infrared data within the Bruggeman effective medium theory was employed to extract the optical constants of the incipient metallic puddles at the onset of the IMT. We found divergent effective carrier mass in the metallic puddles that demonstrates the importance of electronic correlations to the IMT in VO2. We employ the extended dipole model for a quantitative analysis of the observed near-field infrared amplitude contrast and compare the results with those obtained with the basic dipole model.
Vanadium dioxide(VO$_2$) is a paradigmatic example of a strongly correlated system that undergoes a metal-insulator transition at a structural phase transition. To date, this transition has necessitated significant post-hoc adjustments to theory in order to be described properly. Here we report standard state-of-the-art first principles quantum Monte Carlo (QMC) calculations of the structural dependence of the properties of VO$_2$. Using this technique, we simulate the interactions between electrons explicitly, which allows for the metal-insulator transition to naturally emerge, importantly without ad-hoc adjustments. The QMC calculations show that the structural transition directly causes the metal-insulator transition and a change in the coupling of vanadium spins. This change in the spin coupling results in a prediction of a momentum-independent magnetic excitation in the insulating state. While two-body correlations are important to set the stage for this transition, they do not change significantly when VO$_2$ becomes an insulator. These results show that it is now possible to account for electron correlations in a quantitatively accurate way that is also specific to materials.
We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM transition is observed, consistent with a softening of the insulating state due to an increasing metallic volume fraction (below the percolation limit). This phase coexistence facilitates the growth of a homogeneous metallic conducting phase following superheating via photoexcitation. A simple dynamic model using Bruggeman effective medium theory describes the observed initial condition sensitivity.
The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, the sphere temperatures were varied in a range between 100 and 200 Celsius. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.
Electrons in correlated insulators are prevented from conducting by Coulomb repulsion between them. When an insulator-to-metal transition is induced in a correlated insulator by doping or heating, the resulting conducting state can be radically different from that characterized by free electrons in conventional metals. We report on the electronic properties of a prototypical correlated insulator vanadium dioxide (VO2) in which the metallic state can be induced by increasing temperature. Scanning near-field infrared microscopy allows us to directly image nano-scale metallic puddles that appear at the onset of the insulator-to-metal transition. In combination with far-field infrared spectroscopy, the data reveal the Mott transition with divergent quasiparticle mass in the metallic puddles. The experimental approach employed here sets the stage for investigations of charge dynamics on the nanoscale in other inhomogeneous correlated electron systems.
In vanadium dioxide, the interplay between coherent lattice transformation and electronic correlation drives an insulator-to-metal transition (IMT). This phase commutation can be triggered by temperature, pressure, doping or deposition of optical energy. Here we demonstrate that an atomically-strong terahertz electric field initiates a metastable ultrafast IMT in vanadium dioxide without a concomitant lattice transformation. The free-space terahertz field acts as off-resonant excitation with photon energy below the lattice phonons and the interband transitions. Differently from optical and infrared excitation, terahertz interaction leads to a full IMT by interband Zener tunneling with a negligible entropy deposition. In previous experiments the temporal dynamics of IMT in VO2 could be only indirectly inferred. We disentangle the electronic and lattice contributions to the IMT on a sub-picosecond timescale. Near the critical temperature the IMT becomes dissipative and the terahertz field concludes the lattice-assisted metallic nucleation initiated by heating. The method of strong-field induced phase transition presented here is applicable to a wide class of strongly correlated systems and will enable the discovery of novel metastable phases.
M. M. Qazilbash
,M. Brehm
,G. O. Andreev
.
(2009)
.
"Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide"
.
Mumtaz Qazilbash
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا