We have combined temperature dependent local structural measurements with first principles density functional calculations to develop a three dimensional local structure model of the misfit system [Ca2CoO3][CoO2]1.61 (referred to as Ca3Co4O9) which has a rock salt structure stacked incommensurately on a hexagonal CoO2 lattice. The local structural measurements reveal a low coordination of Co(2)-O bonds in the rock salt layer with large static structural disorder. The temperature dependence of the Co(1)-Co(1) bond correlations in the CoO2 layer are found to be normal above ~75K and with a very small static disorder component. An anomalous enhancement in the Co(1)-Co(1) correlations occurs at the onset of long-range magnetic order. Density functional computations suggest that the reduction of the coordination of Co(2) is due to the formation of chains of Co(2)Ox in the a-b plane linked to the Ca-O layers by c-axis Co(2)-O bonds. The reduced dimensionality introduced by the chain-like structure in the rock salt layer and high atomic order in the C
Thin films of the misfit cobaltite Ca3Co4O9 were grown on (0001)-oriented (c-cut) sapphire substrates, using the pulsed-laser deposition techniques. The dependence of the thermoelectric/transport properties on the film growth conditions was investigated
High-performance thermoelectric oxides could offer a great energy solution for integrated and embedded applications in sensing and electronics industries. Oxides, however, often suffer from low Seebeck coefficient when compared with other classes of thermoelectric materials. In search of high-performance thermoelectric oxides, we present a comprehensive density functional investigation, based on GGA$+U$ formalism, surveying the 3d and 4d transition-metal-containing ferrites of the spinel structure. Consequently, we predict MnFe$_2$O$_4$ and RhFe$_2$O$_4$ have Seebeck coefficients of $sim pm 600$ $mu$V K$^{-1}$ at near room temperature, achieved by light hole and electron doping. Furthermore, CrFe$_2$O$_4$ and MoFe$_2$O$_4$ have even higher ambient Seebeck coefficients at $sim pm 700$ $mu$V K$^{-1}$. In the latter compounds, the Seebeck coefficient is approximately a flat function of temperature up to $sim 700$ K, offering a tremendous operational convenience. Additionally, MoFe$_2$O$_4$ doped with $10^{19}$ holes/cm$^3$ has a calculated thermoelectric power factor of $689.81$ $mu$W K$^{-2}$ m$^{-1}$ at $300$ K, and $455.67$ $mu$W K$^{-2}$ m$^{-1}$ at $600$ K. The thermoelectric properties predicted here can bring these thermoelectric oxides to applications at lower temperatures traditionally fulfilled by more toxic and otherwise burdensome materials.
Temperature dependent electrical resistivity, crystal structure and heat capacity measurements reveal a resistivity drop and metal to semiconductor transition corresponding to first order structural phase transition near 400 K in Ca3Co4O9. The lattice parameter c varies smoothly with increasing temperature, while anomalies in the a, b1 and b2 lattice parameters occur at ~ 400 K. Both Ca2CoO3 and CoO2 layers become distorted above ~ 400 K associated with the metal to semiconductor transport behavior change. Resistivity and heat capacity measurements as a function of temperature under magnetic field indicates low spin contribution to this transition. Reduced resistivity associated with this first order phase transition from metallic to semiconducting behavior enhances the thermoelectric properties at high temperatures and points to the metal to semiconductor transition as a mechanism for improved ZT in high temperature thermoelectric oxides.
We investigate the high temperature thermoelectric properties of Heusler alloys Fe2-xMnxCrAl (0<x<1). Substitution of 12.5% Mn at Fe-site (x = 0.25) causes a significant increase in high temperature resistivity (r{ho}) and an enhancement in the Seebeck coefficient (S), as compared to the parent alloy. However, as the concentration of Mn is increased above 0.25, a systematic decrement in the magnitude of both parameters is noted. These observations have been ascribed (from theoretical analysis) to a change in band gap and electronic structure of Fe2CrAl with Mn-substitution. Due to absence of mass fluctuations and lattice strain, no significant change in thermal conductivity is seen across this series of Heusler alloys. Additionally, S drastically changes its magnitude along with a crossover from negative to positive above 900 K, which has been ascribed to the dominance of holes over electrons in high temperature regime. In this series of alloys, S and r{ho} shows a strong dependence on the carrier concentration and strength of d-d hybridization between Fe/Mn and Cr atoms.
Thermoelectric materials (TMs) can uniquely convert waste heat into electricity, which provides a potential solution for the global energy crisis that is increasingly severe. Bulk Cu2Se, with ionic conductivity of Cu ions, exhibits a significant enhancement of its thermoelectric figure of merit zT by a factor of ~3 near its structural transition around 400 K. Here, we show a systematic study of the electronic structure of Cu2Se and its temperature evolution using high-resolution angle-resolved photoemission spectroscopy. Upon heating across the structural transition, the electronic states near the corner of the Brillouin zone gradually disappear, while the bands near the centre of Brillouin zone shift abruptly towards high binding energies and develop an energy gap. Interestingly, the observed band reconstruction well reproduces the temperature evolution of the Seebeck coefficient of Cu2Se, providing an electronic origin for the drastic enhancement of the thermoelectric performance near 400 K. The current results not only bridge among structural phase transition, electronic structures, and thermoelectric properties in a condensed matter system, but also provide valuable insights into the search and design of new generation of thermoelectric materials.