Do you want to publish a course? Click here

Optical orientation in bipolar spintronic devices

154   0   0.0 ( 0 )
 Added by Jaroslav Fabian
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical orientation is a highly efficient tool for the generation of nonequilibrium spin polarization in semiconductors. Combined with spin-polarized transport it offers new functionalities for conventional electronic devices, such as pn junction bipolar diodes or transistors. In nominally nonmagnetic junctions optical orientation can provide a source for spin capacitance--the bias-dependent nonequilibrium spin accumulation--or for spin-polarized current in bipolar spin-polarized solar cells. In magnetic junctions, the nonequilibrium spin polarization generated by spin orientation in a proximity of an equilibrium magnetization gives rise to the spin-voltaic effect (a realization of the Silsbee-Johnson coupling), enabling efficient control of electrical properties such as the I-V characteristics of the junctions by magnetic and optical fields. This article reviews the main results of investigations of spin-polarized and magnetic pn junctions, from spin capacitance to the spin-voltaic effect.



rate research

Read More

Spintronic devices, such as non-volatile magnetic random access memories and logic devices, have attracted considerable attention as potential candidates for future high efficient data storage and computing technology. In a heavy metal or other emerging material with strong spin-orbit coupling (SOC), the charge currents induce spin currents or spin accumulations via SOC. The generated spin currents can exert spin-orbit torques (SOTs) on an adjacent ferromagnet, which opens up a new way to realize magnetization dynamics and switching of the ferromagnetic layer for spintronic devices. In the SOT scheme, the charge-to-spin interconversion efficiency (SOT efficiency) is an important figure of merit for applications. For the effective characterization of this efficiency, the ferromagnetic resonance (FMR) based methods, such as the spin transfer torque ferromagnetic resonance (ST-FMR) and the spin pumping, are common utilized in addition to low frequency harmonic or dc measurements. In this review, we focus on the ST-FMR measurements for the evaluation of the SOT efficiency. We provide a brief summary of the different ST-FMR setups and data analysis methods. We then discuss ST-FMR and SOT studies in various materials, including heavy metals and alloys, topological insulators, two dimensional (2D) materials, interfaces with strong Rashba effect, antiferromagnetic materials, two dimensional electron gas (2DEG) in oxide materials and oxidized nonmagnetic materials.
93 - Han Yan , Zexin Feng , Peixin Qin 2021
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, are comprehensively reviewed. Various emergent topics such as the Neel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, two-dimensional magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, we envision the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.
Motivated by recent progress in development of cryogenic memory compatible with single flux quantum (SFQ) circuits we have performed a theoretical study of magnetic SIsFS Josephson junctions, where S is a bulk superconductor, s is a thin superconducting film, F is a metallic ferromagnet and I is an insulator. We calculate the Josephson current as a function of s and F layers thickness, temperature and exchange energy of F film. We outline several modes of operation of these junctions and demonstrate their unique ability to have large product of a critical current $I_{C}$ and a normal-state resistance $R_{N}$ in the $pi$ state, comparable to that in SIS tunnel junctions commonly used in SFQ circuits. We develop a model describing switching of the Josephson critical current in these devices by external magnetic field. The results are in good agreement with the experimental data for Nb-Al/AlO${_x}$-Nb-Pd$_{0.99}$Fe$_{0.01}$-Nb junctions.
The optical orientation of the exciton spin in an ensemble of self-organized cubic GaN/AlN quantum dots is studied by time-resolved photoluminescence. Under a polarized quasi-resonant excitation, the luminescence linear polarization exhibits no temporal decay, even at room temperature. This demonstrates the robustness of the exciton spin polarization in these cubic nitride nanostructures, with characteristic decay times longer than 10 ns.
Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesis. However, one of the major challenges of fabricating bio-inspired hardware is building ultra-high density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bio-inspired computing include tunable fast non-linear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nano-devices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bio-inspired architectures that include one or several types of spintronic nanodevices. In this article we show how spintronics can be used for bio-inspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges towards fully integrated spintronics-CMOS (Complementary metal - oxide - semiconductor) bio-inspired hardware.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا