Do you want to publish a course? Click here

The microscopic study of a single hydrogen-like impurity in semi-insulating GaAs

252   0   0.0 ( 0 )
 Added by Dmitry Eshchenko
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The charge dynamics of hydrogen-like centers formed by the implantation of energetic (4 MeV) muons in semi-insulating GaAs have been studied by muon spin resonance in electric fields. The results point to the significant role of deep hole traps in the compensation mechanism of GaAs. Electric-field-enhanced neutralization of deep electron and hole traps by muon-track-induced hot carriers results to an increase of the non-equilibrium carrier life-times. As a consequence, the muonium ($mu^+ + e^-$) center at the tetrahedral As site can capture the tracks holes and therefore behaves like a donor.

rate research

Read More

199 - C. P. Weber , Craig A. Benko , 2011
We use optical transient-grating spectroscopy to measure spin diffusion of optically oriented electrons in bulk, semi-insulating GaAs(100). Trapping and recombination do not quickly deplete the photoexcited population. The spin diffusion coefficient of 88 +/- 12 cm2/s is roughly constant at temperatures from 15 K to 150 K, and the spin diffusion length is at least 450 nm. We show that it is possible to use spin diffusion to estimate the electron diffusion coefficient. Due to electron-electron interactions, the electron diffusion is 1.4 times larger than the spin diffusion.
175 - J. Bocquel , , V.R. Kortan 2015
We report the direct observation of two mid-gap core d-states of differing symmetry for a single Fe atom embedded in GaAs. These states are distinguished by the strength of their hybridization with the surrounding host electronic structure. The mid-gap state of Fe that does not hybridize via sigma-bonding is strongly localized to the Fe atom, whereas the other, which does, is extended and comparable in size to other acceptor states. Tight-binding calculations of these mid-gap states agree with the spatial structure of the measured wave functions, and illustrate that such measurements can determine the degree of hybridization via pi-bonding of impurity d-states. These single-dopant mid-gap states with strong d-character, which are intrinsically spin-orbit-entangled, provide an opportunity for probing and manipulating local magnetism and may be of use for high-speed electrical control of single spins.
130 - Z. Salman , T. Prokscha , A. Amato 2014
We present a direct spectroscopic observation of a shallow hydrogen-like muonium state in SrTiO$_3$ which confirms the theoretical prediction that interstitial hydrogen may act as a shallow donor in this material. The formation of this muonium state is temperature dependent and appears below $sim 70$ K. From the temperature dependence we estimate an activation energy of $sim 50$ meV in the bulk and $sim 23$ meV near the free surface. The field and directional dependence of the muonium precession frequencies further supports the shallow impurity state with a rare example of a fully anisotropic hyperfine tensor. From these measurements we determine the strength of the hyperfine interaction and propose that the muon occupies an interstitial site near the face of the oxygen octahedron in SrTiO$_3$. The observed shallow donor state provides new insight for tailoring the electronic and optical properties of SrTiO$_{3}$-based oxide interface systems.
57 - R. Cantelli 1999
Elastic energy absorption measurements versus temperature on semiconducting, semi-insulating (SI) and Fe-doped InP are reported. A thermally activated relaxation process is found only in the SI state, which is identified with the hopping of H atoms trapped at In vacancies. It is proposed that the presence of In vacancies in InP prepared by the liquid encapsulated Czochralski method is due to the lowering of their energy by the saturation of the P dangling bonds with H atoms dissolved from the capping liquid containing H2O. The conversion of iron-free InP to the SI state following high temperature treatments would be due to H loss with the transformation of the H-saturated In vacancies, V_In-H_4 donors, into neutral and acceptor V_In-H_n complexes with n < 4. Such complexes would produce the observed anelastic relaxation process and may also act as deep acceptors which neutralize unwanted donor impurities.
255 - M. Rogalla , Th. Eich , N. Evans 1997
To investigate the trapping and detrapping in SI-GaAs particle detectors we analyzed the signals caused by 5.48 MeV alpha particles with a charge sensitive preamplifier. From the bias and temperature dependence of these signals we determine the activation energies of two electron traps. Additional simulation and measurements of the lifetime as a function of resistivity have shown that the EL2+ is the dominant electron trap in semi-insulating GaAs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا