Do you want to publish a course? Click here

Observation of the symmetry of core states of a single Fe impurity in GaAs

187   0   0.0 ( 0 )
 Added by Paul Koenraad
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the direct observation of two mid-gap core d-states of differing symmetry for a single Fe atom embedded in GaAs. These states are distinguished by the strength of their hybridization with the surrounding host electronic structure. The mid-gap state of Fe that does not hybridize via sigma-bonding is strongly localized to the Fe atom, whereas the other, which does, is extended and comparable in size to other acceptor states. Tight-binding calculations of these mid-gap states agree with the spatial structure of the measured wave functions, and illustrate that such measurements can determine the degree of hybridization via pi-bonding of impurity d-states. These single-dopant mid-gap states with strong d-character, which are intrinsically spin-orbit-entangled, provide an opportunity for probing and manipulating local magnetism and may be of use for high-speed electrical control of single spins.



rate research

Read More

The charge dynamics of hydrogen-like centers formed by the implantation of energetic (4 MeV) muons in semi-insulating GaAs have been studied by muon spin resonance in electric fields. The results point to the significant role of deep hole traps in the compensation mechanism of GaAs. Electric-field-enhanced neutralization of deep electron and hole traps by muon-track-induced hot carriers results to an increase of the non-equilibrium carrier life-times. As a consequence, the muonium ($mu^+ + e^-$) center at the tetrahedral As site can capture the tracks holes and therefore behaves like a donor.
210 - A. Hallal , B. Dieny , M. Chshiev 2014
Using first-principles calculations, we investigated the impact of chromium (Cr) and vanadium (V) impurities on the magnetic anisotropy and spin polarization in Fe/MgO magnetic tunnel junctions. It is demonstrated using layer resolved anisotropy calculation technique, that while the impurity near the interface has a drastic effect in decreasing the perpendicular magnetic anisotropy (PMA), its position within the bulk allows maintaining high surface PMA. Moreover, the effective magnetic anisotropy has a strong tendency to go from in-plane to out-of-plane character as a function of Cr and V concentration favoring out-of-plane magnetization direction for ~1.5 nm thick Fe layers at impurity concentrations above 20 %. At the same time, spin polarization is not affected and even enhanced in most situations favoring an increase of tunnel magnetoresistance (TMR) values.
Using low-temperature scanning tunneling microscopy (STM), we studied the vortex states of single-layer FeSe film on SrTiO3 (100) substrate, and the local behaviors of superconductivity at sample boundaries. We clearly observed multiple discrete Caroli-de Gennes-Matricon (CdGM) states in the vortex core, and quantitative analysis shows their energies well follow the formula: E = {mu}{Delta}^2/E_F, where {mu} is a half integer and {Delta} is the mean superconducting gap over the Fermi surface. Meanwhile, a fully gapped spectrum without states near zero bias is observed at [110](Fe) oriented boundary of 1 ML and 2 ML FeSe films, and atomic step edge of 1 ML FeSe. Accompanied with theoretical calculations, our results indicate a s-wave pairing without sign-change in the high-TC FeSe_SrTiO3 superconductor.
In hybrid lead halide perovskites, the coupling between photogenerated charges and the ionic degrees of freedom plays a crucial role in defining the intrinsic limit of carrier mobility and lifetime. However, direct investigation of this fundamental interaction remains challenging because its relevant dynamics occur on ultrashort spatial and ultrafast temporal scales. Here, we unveil the coupled electron-lattice dynamics of a CH3NH3PbI3 single crystal upon intense photoexcitation through a unique combination of ultrafast electron diffraction, time-resolved photoelectron spectroscopy, and time-dependent ab initio calculations. We observe the structural signature of a hot-phonon bottleneck effect that prevents rapid carrier relaxation, and we uncover a phonon avalanche mechanism responsible for breaking the bottleneck. The avalanche involves a collective emission of low-energy phonons - mainly associated with the organic sub-lattice - that proceeds in a regenerative manner and correlates with the accumulation and confinement of photocarriers at the crystal surface. Our results indicate that in hybrid perovskites carrier transport and spatial confinement are key to controlling the electron-phonon interaction and their rational engineering is relevant for future applications in optoelectronic devices.
Direct evidence of quantum coherence in a single-molecule magnet in frozen solution is reported with coherence times as long as T2 = 630 ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and interestingly, also to those of the solvent. The clear observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential prerequisite for performing quantum computations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا