Do you want to publish a course? Click here

Evolution of opinions on social networks in the presence of competing committed groups

137   0   0.0 ( 0 )
 Added by Sameet Sreenivasan
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Public opinion is often affected by the presence of committed groups of individuals dedicated to competing points of view. Using a model of pairwise social influence, we study how the presence of such groups within social networks affects the outcome and the speed of evolution of the overall opinion on the network. Earlier work indicated that a single committed group within a dense social network can cause the entire network to quickly adopt the groups opinion (in times scaling logarithmically with the network size), so long as the committed group constitutes more than about 10% of the population (with the findings being qualitatively similar for sparse networks as well). Here we study the more general case of opinion evolution when two groups committed to distinct, competing opinions $A$ and $B$, and constituting fractions $p_A$ and $p_B$ of the total population respectively, are present in the network. We show for stylized social networks (including ErdH{o}s-Renyi random graphs and Barabasi-Albert scale-free networks) that the phase diagram of this system in parameter space $(p_A,p_B)$ consists of two regions, one where two stable steady-states coexist, and the remaining where only a single stable steady-state exists. These two regions are separated by two fold-bifurcation (spinodal) lines which meet tangentially and terminate at a cusp (critical point). We provide further insights to the phase diagram and to the nature of the underlying phase transitions by investigating the model on infinite (mean-field limit), finite complete graphs and finite sparse networks. For the latter case, we also derive the scaling exponent associated with the exponential growth of switching times as a function of the distance from the critical point.



rate research

Read More

We show how the prevailing majority opinion in a population can be rapidly reversed by a small fraction p of randomly distributed committed agents who consistently proselytize the opposing opinion and are immune to influence. Specifically, we show that when the committed fraction grows beyond a critical value p_c approx 10%, there is a dramatic decrease in the time, T_c, taken for the entire population to adopt the committed opinion. In particular, for complete graphs we show that when p < p_c, T_c sim exp(alpha(p)N), while for p > p_c, T_c sim ln N. We conclude with simulation results for ErdH{o}s-Renyi random graphs and scale-free networks which show qualitatively similar behavior.
Social networks are not static but rather constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily - the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophilic rewiring rule imposed. First, we find that the presence of homophilic rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size $N$. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue, can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size $N$. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of $T_c$. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.
Social network based information campaigns can be used for promoting beneficial health behaviours and mitigating polarisation (e.g. regarding climate change or vaccines). Network-based intervention strategies typically rely on full knowledge of network structure. It is largely not possible or desirable to obtain population-level social network data due to availability and privacy issues. It is easier to obtain information about individuals attributes (e.g. age, income), which are jointly informative of an individuals opinions and their social network position. We investigate strategies for influencing the system state in a statistical mechanics based model of opinion formation. Using synthetic and data based examples we illustrate the advantages of implementing coarse-grained influence strategies on Ising models with modular structure in the presence of external fields. Our work provides a scalable methodology for influencing Ising systems on large graphs and the first exploration of the Ising influence problem in the presence of ambient (social) fields. By exploiting the observation that strong ambient fields can simplify control of networked dynamics, our findings open the possibility of efficiently computing and implementing public information campaigns using insights from social network theory without costly or invasive levels of data collection.
The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of peoples actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a maximum entropy attachment model - except for its mean value which depends deterministically on the volume of the users activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people.
We develop a theoretical framework for the study of epidemic-like social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we propose a contact-based information spreading model, and show that the critical point of the multiplex system associated to the active phase is determined by the layer whose contact probability matrix has the largest eigenvalue. The framework is applied to a number of different situations, including a real multiplex system. Finally, we also show that when the system through which information is disseminating is inherently multiplex, working with the graph that results from the aggregation of the different layers is flawed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا