We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian ansatz and a Thomas-Fermi solution for the shape of the condensate. The regimes of validity for these two approaches are determined, and their predictions for the collapse time revealed and compared with numerical simulations. The dipolar interactions introduce anisotropy into the collapse dynamics and predominantly lead to collapse in the plane perpendicular to the axis of polarization.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
Magnetic dipole-dipole interaction dominated Bose-Einstein condensates are discussed under spinful situations. We treat the spin degrees of freedom as a classical spin vector, approaching from large spin limit to obtain an effective minimal Hamiltonian; a version extended from a non-linear sigma model. By solving the Gross-Pitaevskii equation we find several novel spin textures where the mass density and spin density are strongly coupled, depending upon trap geometries due to the long-range and anisotropic natures of the dipole-dipole interaction.
The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar condensates, which is followed by collapse in three-dimensional geometries. We show that the nature of this instability is fundamentally different in two-dimensional condensates, due to the dipole-induced stabilization of two-dimensional bright solitons. As a consequence, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic confinement, the instability leads to transient pattern formation followed by the creation of stable two-dimensional solitons. This dynamics should be observable in on-going experiments, allowing for the creation of stable two-dimensional solitons for the first time ever in quantum gases.
A neutral impurity atom immersed in a dilute Bose-Einstein condensate (BEC) can have a bound ground state in which the impurity is self-localized. In this small polaron-like state, the impurity distorts the density of the surrounding BEC, thereby creating the self-trapping potential minimum. We describe the self-localization in a strong coupling approach.
We explore spatial symmetry breaking of a dipolar Bose Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second order phase transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with maximal modulational contrast and near-perfect superfluidity.