We explore spatial symmetry breaking of a dipolar Bose Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second order phase transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with maximal modulational contrast and near-perfect superfluidity.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
The behaviour of a harmonically trapped dipolar Bose-Einstein condensate with its dipole moments rotating at angular frequencies lower than the transverse harmonic trapping frequency is explored in the co-rotating frame. We obtain semi-analytical solutions for the stationary states in the Thomas-Fermi limit of the corresponding dipolar Gross-Pitaevskii equation and utilise linear stability analysis to elucidate a phase diagram for the dynamical stability of these stationary solutions with respect to collective modes. These results are verified via direct numerical simulations of the dipolar Gross-Pitaevskii equation, which demonstrate that dynamical instabilities of the co-rotating stationary solutions lead to the seeding of vortices that eventually relax into a triangular lattice configuration. Our results illustrate that rotation of the dipole polarization represents a new route to vortex formation in dipolar Bose-Einstein condensates.
We perform a full three-dimensional study on miscible-immiscible conditions for coupled dipolar and non-dipolar Bose-Einstein condensates (BEC), confined within anisotropic traps. Without loosing general miscibility aspects that can occur for two-component mixtures, our main focus was on the atomic erbium-dysprosium ($^{168}$Er-$^{164}$Dy) and dysprosium-dysprosium ($^{164}$Dy-$^{162}$Dy) mixtures. Our analysis for pure-dipolar BEC was limited to coupled systems confined in pancake-type traps, after considering a study on the stability regime of such systems. In case of non-dipolar systems with repulsive contact intneeractions we are able to extend the miscibility analysis to coupled systems with cigar-type symmetries. For a coupled condensate with repulsive inter- and intra-species two-body interactions, confined by an external harmonic trap, the transition from a miscible to an immiscible phase is verified to be much softer than in the case the system is confined by a symmetric hard-wall potential. Our results, presented by density plots, are pointing out the main role of the trap symmetry and inter-species interaction for the miscibility. A relevant parameter to measure the overlap between the two densities was defined and found appropriate to quantify the miscibility of a coupled system.
Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profiles of the single vortex state and show how the critical rotational frequency change with the s-wave contact interaction strengths, DDI strengths and the polarization angles. In addition, we find numerically that at the `magic angle $vartheta=arccos(sqrt{3}/3)$, the critical rotational frequency is almost independent of the DDI strength. By numerically solving the dipolar GPE at high rotational speed, we identify different patterns of vortex lattices which strongly depend on the polarization direction. As a result, we undergo a study of vortex lattice structures for the whole regime of polarization direction and find evidence that the vortex lattice orientation tends to be aligned with the direction of the dipoles.
We present a theoretical analysis of dilute gas Bose-Einstein condensates with dipolar atomic interactions under rotation in elliptical traps. Working in the Thomas-Fermi limit, we employ the classical hydrodynamic equations to first derive the rotating condensate solutions and then consider their response to perturbations. We thereby map out the regimes of stability and instability for rotating dipolar Bose-Einstein condensates and in the latter case, discuss the possibility of vortex lattice formation. We employ our results to propose several novel routes to induce vortex lattice formation in a dipolar condensate.