A neutral impurity atom immersed in a dilute Bose-Einstein condensate (BEC) can have a bound ground state in which the impurity is self-localized. In this small polaron-like state, the impurity distorts the density of the surrounding BEC, thereby creating the self-trapping potential minimum. We describe the self-localization in a strong coupling approach.
We theoretically examine three-well interferometry in Bose-Einstein condensates using adiabatic passage. Specifically, we demonstrate that a fractional coherent transport adiabatic passage protocol enables stable spatial splitting in the presence of nonlinear interactions. A reversal of this protocol produces a coherent recombination of the BEC with a phase-dependent population of the three wells. The effect of nonlinear interactions on the interferometric measurement is quantified and found to lead to an enhancement in sensitivity for moderate interaction strengths.
We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian ansatz and a Thomas-Fermi solution for the shape of the condensate. The regimes of validity for these two approaches are determined, and their predictions for the collapse time revealed and compared with numerical simulations. The dipolar interactions introduce anisotropy into the collapse dynamics and predominantly lead to collapse in the plane perpendicular to the axis of polarization.
A toolbox for the quantum simulation of polarons in ultracold atoms is presented. Motivated by the impressive experimental advances in the area of ultracold atomic mixtures, we theoretically study the problem of ultracold atomic impurities immersed in a Bose-Einstein condensate mixture (BEC). The coupling between impurity and BEC gives rise to the formation of polarons whose mutual interaction can be effectively tuned using an external laser driving a quasi-resonant Raman transition between the BEC components. Our scheme allows one to change the effective interactions between polarons in different sites from attractive to zero. This is achieved by simply changing the intensity and the frequency of the two lasers. Such arrangement opens new avenues for the study of strongly correlated condensed matter models in ultracold gases.
We describe the ground state of a large, dilute, neutral atom Bose- Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as impurity) in the polaron regime where the BEC density response to the impurity atoms remains significantly smaller than the average density of the surrounding BEC. We find that N impurity atoms (N is not one) can self-localize at a lower value of the impurity-boson interaction strength than a single impurity atom. When the bare short-range impurity-impurity repulsion does not play a significant role, the self-localization of multiple bosonic impurity atoms into the same single particle orbital (which we call co-self-localization) is the nucleation process of the phase separation transition. When the short-range impurity-impurity repulsion successfully competes with co-self-localization, the system may form a stable liquid of self-localized single impurity polarons.
We investigate the polarons formed by immersing a spinor impurity in a ferromagnetic state of $F=1$ spinor Bose-Einstein condensate. The ground state energies and effective masses of the polarons are calculated in both weak-coupling regime and strong-coupling regime. In the weakly interacting regime the second order perturbation theory is performed. In the strong coupling regime we use a simple variational treatment. The analytical approximations to the energy and effective mass of the polarons are constructed. Especially, a transition from the mobile state to the self-trapping state of the polaron in the strong coupling regime is discussed. We also estimate the signatures of polaron effects in spinor BEC for the future experiments.