Do you want to publish a course? Click here

The stability of an optical clock laser transferred to the interrogation oscillator for a Cs fountain

286   0   0.0 ( 0 )
 Added by Harald Schnatz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We stabilise a microwave oscillator at 9.6 GHz to an optical clock laser at 344 THz by using a fibre-based femtosecond laser frequency comb as a transfer oscillator. With a second frequency comb we measure independently the instability of the microwave source with respect to another optical clock laser frequency at 456 THz. The total fractional frequency instability of this optic-to-microwave and microwave-to-optic conversion resulted in an Allan deviation sigma_y, of sigma_y=1.2E-14 at 1 s averaging time (band width 50 kHz). The residual phase noise density is -97 dBc/Hz at 10 Hz offset from the 9.6 GHz carrier. Replacing the existing quartz-based interrogation oscillator of the PTB caesium fountain CSF1 with this optically stabilised microwave source will reduce the instability contribution due to the Dick effect from the 1E-13-level at 1s averaging time to an insignificant level at the current status of CSF1. Therefore this new microwave source can be an alternative to cryogenic sapphire-loaded cavity oscillators in order to overcome the limitations of state-of-the-art quartz oscillators.



rate research

Read More

A caesium fountain clock is operated utilizing a microwave oscillator that derives its frequency stability from a stable laser by means of a fiber-laser femtosecond frequency comb. This oscillator is based on the technology developed for optical clocks and replaces the quartz based microwave oscillator commonly used in fountain clocks. As a result, a significant decrease of the frequency instability of the fountain clock is obtained, reaching 0.74E-14 at 100 s averaging time. We could demonstrate that for a significant range of detected atom numbers the instability is limited by quantum projection noise only, and that for the current status of this fountain clock the new microwave source poses no limit on the achievable frequency instability.
We report the operation of a dual Rb/Cs atomic fountain clock. 133Cs and 87Rb atoms are cooled, launched, and detected simultaneously in LNE-SYRTEs FO2 double fountain. The dual clock operation occurs with no degradation of either the stability or the accuracy. We describe the key features for achieving such a simultaneous operation. We also report on the results of the first Rb/Cs frequency measurement campaign performed with FO2 in this dual atom clock configuration, including a new determination of the absolute 87Rb hyperfine frequency.
We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase-noise-compensated 200 m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7 cdot 10^{-18} after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10^{14}. Furthermore, with an eye towards the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.
Vapor cell atomic clocks exhibit reduced frequency stability for averaging time between about one hundred and a few thousand seconds. Here we report a study on the impact of the main parameters on the mid-to-long term instability of a buffer-gas vapor cell Cs clock, based on coherent population trapping (CPT). The CPT signal is observed on the Cs D1 line transmission, using a double $Lambda$ scheme and a Ramsey interrogation technique. The effects on the clock frequency of the magnetic field, the cell temperature, and the laser intensities are reported. We show in particular that the laser intensity shift is temperature dependent. Along with the laser intensity ratio and laser polarization properties, this is one of the most important parameters.
The ESA mission Space Optical Clock project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than $1 times 10^{-17}$ uncertainty and $1 times 10^{-15} {tau}^{-1/2}$ instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below $1 times 10^{-15} {tau}^{-1/2}$ and fractional inaccuracy $5 times 10^{-17}$. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in $^{88}$Sr was observed with linewidth as small as 9 Hz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا