Do you want to publish a course? Click here

A high stability semiconductor laser system for a $^{88}$Sr-based optical lattice clock

110   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase-noise-compensated 200 m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7 cdot 10^{-18} after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10^{14}. Furthermore, with an eye towards the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.



rate research

Read More

We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the stabilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of $2times10^{-17}$ was reached after $10^5$ s of averaging in an interleaved self-comparison of the clock.
93 - Anders Brusch 2005
We report the observation of the higher order frequency shift due to the trapping field in a $^{87}$Sr optical lattice clock. We show that at the magic wavelength of the lattice, where the first order term cancels, the higher order shift will not constitute a limitation to the fractional accuracy of the clock at a level of $10^{-18}$. This result is achieved by operating the clock at very high trapping intensity up to $400 $kW/cm$^2$ and by a specific study of the effect of the two two-photon transitions near the magic wavelength.
Optical frequency comparison of the 40Ca+ clock transition u_{Ca} (2S1/2-2D5/2, 729nm) against the 87Sr optical lattice clock transition u_{Sr}(1S0-3P0, 698nm) has resulted in a frequency ratio u_{Ca} / u_{Sr} = 0.957 631 202 358 049 9(2 3). The rapid nature of optical comparison allowed the statistical uncertainty of frequency ratio u_{Ca} / u_{Sr} to reach 1x10-15 in only 1000s and yielded a value consistent with that calculated from separate absolute frequency measurements of u_{Ca} using the International Atomic Time (TAI) link. The total uncertainty of the frequency ratio using optical comparison (free from microwave link uncertainties) is smaller than that obtained using absolute frequency measurement, demonstrating the advantage of optical frequency evaluation. We report the absolute frequency of ^{40}Ca+ with a systematic uncertainty 14 times smaller than our previous measurement [1].
Existing optical lattice clocks demonstrate a high level of performance, but they remain complex experimental devices. In order to address a wider range of applications including those requiring transportable devices, it will be necessary to simplify the laser systems and reduce the amount of support hardware. Here we demonstrate two significant steps towards this goal: demonstration of clock signals from a Sr lattice clock based solely on semiconductor laser technology, and a method for finding the clock transition (based on a coincidence in atomic wavelengths) that removes the need for extensive frequency metrology hardware. Moreover, the unexpected high contrast in the signal revealed evidence of density dependent collisions in Sr-88 atoms.
We demonstrate a precision frequency measurement using a phase-stabilized 120-km optical fiber link over a physical distance of 50 km. The transition frequency of the 87Sr optical lattice clock at the University of Tokyo is measured to be 429228004229874.1(2.4) Hz referenced to international atomic time (TAI). The measured frequency agrees with results obtained in Boulder and Paris at a 6*10^-16 fractional level, which matches the current best evaluations of Cs primary frequency standards. The results demonstrate the excellent functions of the intercity optical fibre link, and the great potential of optical lattice clocks for use in the redefinition of the second.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا