Do you want to publish a course? Click here

Systematic infrared 2.5-5 micron spectroscopy of nearby ultraluminous infrared galaxies with AKARI

132   0   0.0 ( 0 )
 Added by Masatoshi Imanishi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the results of systematic infrared 2.5-5 micron spectroscopy of 45 nearby ultraluminous infrared galaxies (ULIRGs) at z < 0.3 using IRC onboard the AKARI satellite. This paper investigates whether the luminosities of these ULIRGs are dominated by starburst activity, or optically elusive buried AGNs are energetically important. Our criteria include the strengths of the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features and the optical depths of absorption features at 3.1 micron due to ice-covered dust grains and at 3.4 micron from bare carbonaceous dust grains. Because of the AKARI IRCs spectroscopic capability in the full 2.5-5 micron wavelength range, unaffected by Earths atmosphere, we can apply this energy diagnostic method to ULIRGs at z > 0.15. We estimate the intrinsic luminosities of extended (several kpc), modestly obscured (Av < 15 mag) starburst activity based on the 3.3 micron PAH emission luminosities measured in AKARI IRC slitless spectra, and confirm that such starbursts are energetically unimportant in nearby ULIRGs. In roughly half of the observed ULIRGs classified optically as non-Seyferts, we find signatures of luminous energy sources that produce no PAH emission and/or are more centrally concentrated than the surrounding dust. We interpret these energy sources as buried AGNs. The fraction of ULIRGs with detectable buried AGN signatures increases with increasing infrared luminosity. Our overall results support the scenario that luminous buried AGNs are important in many ULIRGs at z < 0.3 classified optically as non-Seyferts, and that the optical undetectability of such buried AGNs occurs merely because of a large amount of nuclear dust, which can make the sightline of even the lowest dust column density opaque to the ionizing radiation of the AGNs.

rate research

Read More

We present the results of our systematic infrared 2.5-5 micron spectroscopy of 60 luminous infrared galaxies (LIRGs) with infrared luminosities L(IR) = 10^11-12 Lsun, and 54 ultraluminous infrared galaxies (ULIRGs) with L(IR) > 10^12 Lsun, using AKARI IRC. AKARI IRC slit-less spectroscopy allows us to probe the full range of emission from these galaxies, including spatially extended components. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features, hydrogen recombination emission lines, and various absorption features are detected and used to investigate the properties of these galaxies. Because of the relatively small effect of dust extinction in the infrared range, quantitative discussion of these dusty galaxy populations is possible. For sources with clearly detectable Br beta (2.63 micron) and Br alpha (4.05 micron) emission lines, the flux ratios are found to be similar to that predicted by case B theory. Starburst luminosities are estimated from both 3.3 micron PAH and Br alpha emission, which roughly agree with each other. In addition to the detected starburst activity, a significant fraction of the observed sources display signatures of obscured AGNs, such as low PAH equivalent widths, large optical depths of dust absorption features, and red continuum emission. The energetic importance of optically elusive buried AGNs in optically non-Seyfert galaxies tends to increase with increasing galaxy infrared luminosity, from LIRGs to ULIRGs.
151 - H. Inami , L. Armus , H. Matsuhara 2018
We present AKARI 2.5-5um spectra of 145 local luminous infrared galaxies in the Great Observatories All-sky LIRG Survey. In all of the spectra, we measure the line fluxes and EQWs of the polycyclic aromatic hydrocarbon (PAH) at 3.3um and the hydrogen recombination line Br-alpha, with apertures matched to the slit sizes of the Spitzer spectrograph and with an aperture covering ~95% of the total flux in the AKARI 2D spectra. The star formation rates (SFRs) derived from Br-alpha measured in the latter aperture agree well with SFRs(LIR), when the dust extinction correction is adopted based on the 9.7um absorption feature. Together with the Spitzer spectra, we are able to compare the 3.3 and 6.2um PAH features, the two most commonly used near/mid-IR indicators of starburst (SB) or active galactic nucleus (AGN) dominated galaxies. We find that the 3.3 and 6.2um PAH EQWs do not follow a linear correlation and at least 1/3 of galaxies classified as AGN-dominated using 3.3um PAH are classified as starbursts based on 6.2um PAH. These galaxies have a bluer continuum slope than galaxies that are indicated to be SB-dominated by both PAH features. The bluer continuum emission suggests that their continuum is dominated by stellar emission rather than hot dust. We also find that the median Spitzer spectra of these sources are remarkably similar to the pure SB-dominated sources indicated by high PAH EQWs in both 3.3 and 6.2um. We propose a revised SB/AGN diagnostic diagram using 2-5um data. We also use the AKARI and Spitzer spectra to examine the performance of our new diagnostics and to estimate 3.3um PAH fluxes using the JWST photometric bands in 0<z<5. Of the known PAH features and mid-IR high ionization emission lines used as SB/AGN indicators, only the 3.3um PAH feature is observable with JWST at z>3.5, because the rest of the features at longer wavelengths fall outside the JWST wavelength coverage.
We conducted systematic observations of the HI Br-alpha line (4.05 micron) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 micron) in 50 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. The Br-alpha line is predicted to be the brightest among the HI lines under high dust-extinction conditions (A_V>15 mag). The Br-alpha line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Br-alpha line in 33 ULIRGs. The luminosity of the line (L_BrA) correlates well with that of the 3.3 micron PAH emission (L_3.3). Thus we utilize L_3.3 as an indicator of star formation in fainter objects where the Br-alpha line is undetected. The mean L_BrA/L_IR ratio in LINERs/Seyferts is significantly lower than that in HII galaxies. This difference is reconfirmed with the L_3.3/L_IR ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ~67%, and active galactic nuclei contribute to the remaining ~33%. However, comparing the number of ionizing photons, Q_BrA, derived from L_BrA with that, Q_IR, expected from star formation rate required to explain L_IR, we find that the mean Q_BrA/Q_IR ratio is only 55.5+/-7.5% even in HII galaxies which are thought to be energized by pure starburst. This deficit of ionizing photons traced by the Br-alpha line is significant even taking heavy dust extinction into consideration. We propose that dust within HII regions absorbs a significant fraction of ionizing photons.
We present the result of a systematic infrared 2.5-5 um spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10 < log(L_IR / Lsun) < 13) obtained from AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 um polycyclic aromatic hydrocarbon (PAH) emission feature from star forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction of buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10 < log(L_IR / Lsun) < 13, including normal infrared galaxies with log (L_IR / Lsun) < 11. The energy contribution from AGNs in the total infrared luminosity is only ~7% in LIRGs and ~20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGN. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.
We present infrared L-band (3-4 micron) nuclear spectra of a large sample of nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets. Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron produced by bare carbonaceous dust, we search for signatures of powerful active galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The 3.3 micron PAH emission, the signatures of starbursts, is detected in all but two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for only a small fraction of the infrared luminosities. Three LINER ULIRGs show spectra typical of almost pure buried AGNs, namely, strong absorption features with very small equivalent-width PAH emission. Besides these three sources, 14 LINER and 3 HII ULIRGs nuclei show strong absorption features whose absolute optical depths suggest an energy source more centrally concentrated than the surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and 3 out of 13 (23%) HII ULIRGs nuclei show some degree of evidence for powerful buried AGNs, suggesting that powerful buried AGNs may be more common in LINER ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs with both warm and cool far-infrared colors. These spectra are compared with those of 15 ULIRGs nuclei with optical Seyfert signatures taken for comparison.The overall spectral properties suggest that the total amount of dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than that around AGNs in Seyfert 2 ULIRGs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا