Do you want to publish a course? Click here

Infrared 3-4 Micron Spectroscopic Investigations of a Large Sample of Nearby Ultraluminous Infrared Galaxies

71   0   0.0 ( 0 )
 Added by Masatoshi Imanishi
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present infrared L-band (3-4 micron) nuclear spectra of a large sample of nearby ultraluminous infrared galaxies (ULIRGs).ULIRGs classified optically as non-Seyferts (LINERs, HII-regions, and unclassified) are our main targets. Using the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission and absorption features at 3.1 micron due to ice-covered dust and at 3.4 micron produced by bare carbonaceous dust, we search for signatures of powerful active galactic nuclei (AGNs) deeply buried along virtually all lines-of-sight. The 3.3 micron PAH emission, the signatures of starbursts, is detected in all but two non-Seyfert ULIRGs, but the estimated starburst magnitudes can account for only a small fraction of the infrared luminosities. Three LINER ULIRGs show spectra typical of almost pure buried AGNs, namely, strong absorption features with very small equivalent-width PAH emission. Besides these three sources, 14 LINER and 3 HII ULIRGs nuclei show strong absorption features whose absolute optical depths suggest an energy source more centrally concentrated than the surrounding dust, such as a buried AGN. In total, 17 out of 27 (63%) LINER and 3 out of 13 (23%) HII ULIRGs nuclei show some degree of evidence for powerful buried AGNs, suggesting that powerful buried AGNs may be more common in LINER ULIRGs than in HII ULIRGs. The evidence of AGNs is found in non-Seyfert ULIRGs with both warm and cool far-infrared colors. These spectra are compared with those of 15 ULIRGs nuclei with optical Seyfert signatures taken for comparison.The overall spectral properties suggest that the total amount of dust around buried AGNs in non-Seyfert ULIRGs is systematically larger than that around AGNs in Seyfert 2 ULIRGs.



rate research

Read More

We present the results of Spitzer IRS low-resolution infrared 5-35 micron spectroscopy of 17 nearby ULIRGs at z < 0.2, optically classified as non-Seyferts. The presence of optically elusive, but intrinsically luminous, buried AGNs is investigated, based on the strengths of polycyclic aromatic hydrocarbon emission and silicate dust absorption features detected in the spectra. The signatures of luminous buried AGNs, whose intrinsic luminosities range up to ~10^12 Lsun, are found in eight sources. We combine these results with those of our previous research to investigate the energy function of buried AGNs in a complete sample of optically non-Seyfert ULIRGs in the local universe at z < 0.3 (85 sources). We confirm a trend that we previously discovered: that buried AGNs are more common in galaxies with higher infrared luminosities. Because optical Seyferts also show a similar trend, we argue more generally that the energetic importance of AGNs is intrinsically higher in more luminous galaxies, suggesting that the AGN-starburst connections are luminosity-dependent. This may be related to the stronger AGN feedback scenario in currently more massive galaxy systems, as a possible origin of the galaxy downsizing phenomenon.
We report on the results of systematic infrared 2.5-5 micron spectroscopy of 45 nearby ultraluminous infrared galaxies (ULIRGs) at z < 0.3 using IRC onboard the AKARI satellite. This paper investigates whether the luminosities of these ULIRGs are dominated by starburst activity, or optically elusive buried AGNs are energetically important. Our criteria include the strengths of the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features and the optical depths of absorption features at 3.1 micron due to ice-covered dust grains and at 3.4 micron from bare carbonaceous dust grains. Because of the AKARI IRCs spectroscopic capability in the full 2.5-5 micron wavelength range, unaffected by Earths atmosphere, we can apply this energy diagnostic method to ULIRGs at z > 0.15. We estimate the intrinsic luminosities of extended (several kpc), modestly obscured (Av < 15 mag) starburst activity based on the 3.3 micron PAH emission luminosities measured in AKARI IRC slitless spectra, and confirm that such starbursts are energetically unimportant in nearby ULIRGs. In roughly half of the observed ULIRGs classified optically as non-Seyferts, we find signatures of luminous energy sources that produce no PAH emission and/or are more centrally concentrated than the surrounding dust. We interpret these energy sources as buried AGNs. The fraction of ULIRGs with detectable buried AGN signatures increases with increasing infrared luminosity. Our overall results support the scenario that luminous buried AGNs are important in many ULIRGs at z < 0.3 classified optically as non-Seyferts, and that the optical undetectability of such buried AGNs occurs merely because of a large amount of nuclear dust, which can make the sightline of even the lowest dust column density opaque to the ionizing radiation of the AGNs.
We present the results of our systematic infrared 2.5-5 micron spectroscopy of 60 luminous infrared galaxies (LIRGs) with infrared luminosities L(IR) = 10^11-12 Lsun, and 54 ultraluminous infrared galaxies (ULIRGs) with L(IR) > 10^12 Lsun, using AKARI IRC. AKARI IRC slit-less spectroscopy allows us to probe the full range of emission from these galaxies, including spatially extended components. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features, hydrogen recombination emission lines, and various absorption features are detected and used to investigate the properties of these galaxies. Because of the relatively small effect of dust extinction in the infrared range, quantitative discussion of these dusty galaxy populations is possible. For sources with clearly detectable Br beta (2.63 micron) and Br alpha (4.05 micron) emission lines, the flux ratios are found to be similar to that predicted by case B theory. Starburst luminosities are estimated from both 3.3 micron PAH and Br alpha emission, which roughly agree with each other. In addition to the detected starburst activity, a significant fraction of the observed sources display signatures of obscured AGNs, such as low PAH equivalent widths, large optical depths of dust absorption features, and red continuum emission. The energetic importance of optically elusive buried AGNs in optically non-Seyfert galaxies tends to increase with increasing galaxy infrared luminosity, from LIRGs to ULIRGs.
106 - M. Yang 2007
We present 350micron observations of 36 ultraluminous infrared galaxies (ULIRGs) at intermediate redshifts (0.089 <= z <= 0.926) using the Submillimeter High Angular Resolution Camera II (SHARC-II) on the Caltech Submillimeter Observatory (CSO). In total, 28 sources are detected at S/N >= 3, providing the first flux measurements longward of 100micron for a statistically significant sample of ULIRGs in the redshift range of 0.1 < z < 1.0. Combining our 350micron flux measurements with the existing IRAS 60 and 100micron data, we fit a single-temperature model to the spectral energy distribution (SED), and thereby estimate dust temperatures and far-IR luminosities. Assuming an emissivity index of beta = 1.5, we find a median dust temperature and far-IR luminosity of Td = 42.8+-7.1K and log(Lfir/Lsolar) = 12.2+-0.5, respectively. The far-IR/radio correlation observed in local star-forming galaxies is found to hold for ULIRGs in the redshift range 0.1 < z < 0.5, suggesting that the dust in these sources is predominantly heated by starbursts. We compare the far-IR luminosities and dust temperatures derived for dusty galaxy samples at low and high redshifts with our sample of ULIRGs at intermediate redshift. A general Lfir-Td relation is observed, albeit with significant scatter, due to differing selection effects and variations in dust mass and grain properties. The relatively high dust temperatures observed for our sample compared to that of high-z submillimeter-selected starbursts with similar far-IR luminosities suggest that the dominant star formation in ULIRGs at moderate redshifts takes place on smaller spatial scales than at higher redshifts.
110 - Carol Lonsdale 2006
Ever since their discovery in the 1970s, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measure. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا