Do you want to publish a course? Click here

AKARI IRC infrared 2.5-5 micron spectroscopy of a large sample of luminous infrared galaxies

153   0   0.0 ( 0 )
 Added by Masatoshi Imanishi
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of our systematic infrared 2.5-5 micron spectroscopy of 60 luminous infrared galaxies (LIRGs) with infrared luminosities L(IR) = 10^11-12 Lsun, and 54 ultraluminous infrared galaxies (ULIRGs) with L(IR) > 10^12 Lsun, using AKARI IRC. AKARI IRC slit-less spectroscopy allows us to probe the full range of emission from these galaxies, including spatially extended components. The 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features, hydrogen recombination emission lines, and various absorption features are detected and used to investigate the properties of these galaxies. Because of the relatively small effect of dust extinction in the infrared range, quantitative discussion of these dusty galaxy populations is possible. For sources with clearly detectable Br beta (2.63 micron) and Br alpha (4.05 micron) emission lines, the flux ratios are found to be similar to that predicted by case B theory. Starburst luminosities are estimated from both 3.3 micron PAH and Br alpha emission, which roughly agree with each other. In addition to the detected starburst activity, a significant fraction of the observed sources display signatures of obscured AGNs, such as low PAH equivalent widths, large optical depths of dust absorption features, and red continuum emission. The energetic importance of optically elusive buried AGNs in optically non-Seyfert galaxies tends to increase with increasing galaxy infrared luminosity, from LIRGs to ULIRGs.



rate research

Read More

We report on the results of systematic infrared 2.5-5 micron spectroscopy of 45 nearby ultraluminous infrared galaxies (ULIRGs) at z < 0.3 using IRC onboard the AKARI satellite. This paper investigates whether the luminosities of these ULIRGs are dominated by starburst activity, or optically elusive buried AGNs are energetically important. Our criteria include the strengths of the 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission features and the optical depths of absorption features at 3.1 micron due to ice-covered dust grains and at 3.4 micron from bare carbonaceous dust grains. Because of the AKARI IRCs spectroscopic capability in the full 2.5-5 micron wavelength range, unaffected by Earths atmosphere, we can apply this energy diagnostic method to ULIRGs at z > 0.15. We estimate the intrinsic luminosities of extended (several kpc), modestly obscured (Av < 15 mag) starburst activity based on the 3.3 micron PAH emission luminosities measured in AKARI IRC slitless spectra, and confirm that such starbursts are energetically unimportant in nearby ULIRGs. In roughly half of the observed ULIRGs classified optically as non-Seyferts, we find signatures of luminous energy sources that produce no PAH emission and/or are more centrally concentrated than the surrounding dust. We interpret these energy sources as buried AGNs. The fraction of ULIRGs with detectable buried AGN signatures increases with increasing infrared luminosity. Our overall results support the scenario that luminous buried AGNs are important in many ULIRGs at z < 0.3 classified optically as non-Seyferts, and that the optical undetectability of such buried AGNs occurs merely because of a large amount of nuclear dust, which can make the sightline of even the lowest dust column density opaque to the ionizing radiation of the AGNs.
We present the result of a systematic infrared 2.5-5 um spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10 < log(L_IR / Lsun) < 13) obtained from AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 um polycyclic aromatic hydrocarbon (PAH) emission feature from star forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction of buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10 < log(L_IR / Lsun) < 13, including normal infrared galaxies with log (L_IR / Lsun) < 11. The energy contribution from AGNs in the total infrared luminosity is only ~7% in LIRGs and ~20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGN. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.
151 - H. Inami , L. Armus , H. Matsuhara 2018
We present AKARI 2.5-5um spectra of 145 local luminous infrared galaxies in the Great Observatories All-sky LIRG Survey. In all of the spectra, we measure the line fluxes and EQWs of the polycyclic aromatic hydrocarbon (PAH) at 3.3um and the hydrogen recombination line Br-alpha, with apertures matched to the slit sizes of the Spitzer spectrograph and with an aperture covering ~95% of the total flux in the AKARI 2D spectra. The star formation rates (SFRs) derived from Br-alpha measured in the latter aperture agree well with SFRs(LIR), when the dust extinction correction is adopted based on the 9.7um absorption feature. Together with the Spitzer spectra, we are able to compare the 3.3 and 6.2um PAH features, the two most commonly used near/mid-IR indicators of starburst (SB) or active galactic nucleus (AGN) dominated galaxies. We find that the 3.3 and 6.2um PAH EQWs do not follow a linear correlation and at least 1/3 of galaxies classified as AGN-dominated using 3.3um PAH are classified as starbursts based on 6.2um PAH. These galaxies have a bluer continuum slope than galaxies that are indicated to be SB-dominated by both PAH features. The bluer continuum emission suggests that their continuum is dominated by stellar emission rather than hot dust. We also find that the median Spitzer spectra of these sources are remarkably similar to the pure SB-dominated sources indicated by high PAH EQWs in both 3.3 and 6.2um. We propose a revised SB/AGN diagnostic diagram using 2-5um data. We also use the AKARI and Spitzer spectra to examine the performance of our new diagnostics and to estimate 3.3um PAH fluxes using the JWST photometric bands in 0<z<5. Of the known PAH features and mid-IR high ionization emission lines used as SB/AGN indicators, only the 3.3um PAH feature is observable with JWST at z>3.5, because the rest of the features at longer wavelengths fall outside the JWST wavelength coverage.
Interplanetary dust (IPD) is thought to be recently supplied from asteroids and comets. Grain properties of the IPD can give us the information about the environment in the proto-solar system, and can be traced from the shapes of silicate features around 10 $mu$m seen in the zodiacal emission spectra. We analyzed mid-IR slit-spectroscopic data of the zodiacal emission in various sky directions obtained with the Infrared Camera on board AKARI satellite. After we subtracted the contamination due to instrumental artifacts, we have successfully obtained high S/N spectra and have determined detailed shapes of excess emission features in the 9 -- 12 $mu$m range in all the sky directions. According to a comparison between the feature shapes averaged over all directions and the absorption coefficients of candidate minerals, the IPD was found to typically include small silicate crystals, especially enstatite grains. We also found the variations in the feature shapes and the related grain properties among the different sky directions. From investigations of the correlation between feature shapes and the brightness contributions from dust bands, the IPD in dust bands seems to have the size frequency distribution biased toward large grains and show the indication of hydrated minerals. The spectra at higher ecliptic latitude showed a stronger excess, which indicates an increase in the fraction of small grains included in the line of sight at higher ecliptic latitudes. If we focus on the dependence of detailed feature shapes on ecliptic latitudes, the IPD at higher latitudes was found to have a lower olivine/pyroxene ratio for small amorphous grains. The variation of the mineral composition of the IPD in different sky directions may imply different properties of the IPD from different types of parent bodies, because the spatial distribution of the IPD depends on the type of the parent body.
138 - S. Oyabu 2011
We present a new sample of active galactic nuclei (AGNs) identified using the catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an advantage in detecting AGNs that are obscured at optical wavelengths due to extinction. We first selected AKARI 9micron excess sources with F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky Survey. We then obtained follow-up near-infrared spectroscopy with the AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m telescope at Lick Observatory. On the basis of on these observations, we detected hot dust with a characteristic temperature of ~500K in two luminous infrared galaxies. The hot dust is suspected to be associated with AGNs that exhibit their nonstellar activity not in the optical, but in the near- and mid-infrared bands, i.e., they harbor buried AGNs. The host galaxy stellar masses of 4-6 x 10^9 M_sun are small compared with the hosts in optically-selected AGN populations. These objects were missed by previous surveys, demonstrating the power of the AKARI MIR All-Sky Survey to widen AGN searches to include more heavily obscured objects. The existence of multiple dusty star clusters with massive stars cannot be completely ruled out with our current data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا