Do you want to publish a course? Click here

Collective States and Symmetric Local Decoherence in Large Ensembles of Qubits

124   0   0.0 ( 0 )
 Added by J.M. Geremia
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The symmetric collective states of an atomic spin ensemble (i.e., many-body states that are invariant under particle exchange) are not preserved by decoherence that acts identically but individually on members of the ensemble. We develop a class of collective states in an ensemble of N spin-1/2 particles that is invariant under symmetric local decoherence and find that the dimension of the Hilbert space spanned by these collective states scales only as N^2. We then investigate the open system dynamics of experimentally relevant non-classical collective atomic states, including Schroedinger cat and spin squeezed states, subject to various symmetric but local decoherence models.



rate research

Read More

We analyze entanglement and nonlocal properties of the convex set of symmetric $N$-qubits states which are diagonal in the Dicke basis. First, we demonstrate that within this set, positivity of partial transposition (PPT) is necessary and sufficient for separability --- which has also been reported recently in https://doi.org/10.1103/PhysRevA.94.060101 {Phys. Rev. A textbf{94}, 060101(R) (2016)}. Further, we show which states among the entangled DS are nonlocal under two-body Bell inequalities. The diagonal symmetric convex set contains a simple and extended family of states that violate the weak Peres conjecture, being PPT with respect to one partition but violating a Bell inequality in such partition. Our method opens new directions to address entanglement and non-locality on higher dimensional symmetric states, where presently very few results are available.
Ensembles of electron spins in hybrid microwave systems are powerful and versatile components for future quantum technologies. Quantum memories with high storage capacities are one such example which require long-lived states that can be addressed and manipulated coherently within the inhomogeneously broadened ensemble. This broadening is essential for true multimode memories, but induces a considerable spin dephasing and together with dissipation from a cavity interface poses a constraint on the memorys storage time. In this work we show how to overcome both of these limitations through the engineering of long-lived dark states in an ensemble of electron spins hosted by nitrogen-vacancy centres in diamond. By burning narrow spectral holes into a spin ensemble strongly coupled to a superconducting microwave cavity, we observe long-lived Rabi oscillations with high visibility and a decay rate that is a factor of forty smaller than the spin ensemble linewidth and thereby a factor of more than three below the pure cavity dissipation rate. This significant reduction lives up to the promise of hybrid devices to perform better than their individual subcomponents. To demonstrate the potential of our approach we realise the first step towards a solid-state microwave spin multiplexer by engineering multiple long-lived dark states. Our results show that we can fully access the decoherence free subspace in our experiment and selectively prepare protected states by spectral hole burning. This technique opens up the way for truly long-lived quantum memories, solid-state microwave frequency combs, optical to microwave quantum transducers and spin squeezed states. Our approach also paves the way for a new class of cavity QED experiments with dense spin ensembles, where dipole spin-spin interactions become important and many-body phenomena will be directly accessible on a chip.
We present a combined theoretical and experimental study of solid-state spin decoherence in an electronic spin bath, focusing specifically on ensembles of nitrogen vacancy (NV) color centers in diamond and the associated substitutional nitrogen spin bath. We perform measurements of NV spin free induction decay times $T_2^*$ and spin-echo coherence times $T_2$ in 25 diamond samples with nitrogen concentrations [N] ranging from 0.01 to 300,ppm. We introduce a microscopic model and perform numerical simulations to quantitatively explain the degradation of both $T_2^*$ and $T_2$ over four orders of magnitude in [N]. Our results resolve a long-standing discrepancy observed in NV $T_2$ experiments, enabling us to describe NV ensemble spin coherence decay shapes as emerging consistently from the contribution of many individual NV.
399 - G. Campagnano , A. Hamma , 2009
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the two cases (I) two independent bosonic baths and (II) one common bath, at temperature T. The entanglement dynamics is studied in terms of the concurrence C (t) between the two spins and of the von Neumann entropy S(t) with respect to the bath, as a function of time. We prove that the system does thermalize. In the case (II) of a single bath, the existence of a decoherence-free (DFS) subspace makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces. The equilibrium state in this case is not the Gibbs state. The entanglement dynamics for the single bath case is also studied as a function of temperature, coupling strength with the environment and strength of tunneling coupling. The case of the mixed state is finally shown and discussed.
Local available quantum correlations (LAQC), as defined by Mundarain et al., are analyzed for two subsets of 2-qubit X states. We start by studying X-states that are symmetric under the exchange of subsystems, that is, those with the same non-null local Bloch vector. We also analyze the subset of states that are anti-symmetric under subsystem exchange, that is, those that have non-null local Bloch vectors with an equal magnitude but opposite direction. We present various examples and compare the obtained results to concurrence as an entanglement measure and with quantum discord. We have also included markovian decoherence, with the analysis of amplitude damping decoherence for Werner states. As was previously observed for depolarization and phase damping decoherence, LAQC did not exhibit sudden death behavior for Werner states under amplitude damping decoherence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا