Do you want to publish a course? Click here

Decoherence and Entanglement Dynamics of Coupled Qubits

366   0   0.0 ( 0 )
 Added by Alioscia Hamma
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the two cases (I) two independent bosonic baths and (II) one common bath, at temperature T. The entanglement dynamics is studied in terms of the concurrence C (t) between the two spins and of the von Neumann entropy S(t) with respect to the bath, as a function of time. We prove that the system does thermalize. In the case (II) of a single bath, the existence of a decoherence-free (DFS) subspace makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces. The equilibrium state in this case is not the Gibbs state. The entanglement dynamics for the single bath case is also studied as a function of temperature, coupling strength with the environment and strength of tunneling coupling. The case of the mixed state is finally shown and discussed.



rate research

Read More

We investigate the time evolution of entanglement for bipartite systems of arbitrary dimensions under the influence of decoherence. For qubits, we determine the precise entanglement decay rates under different system-environment couplings, including finite temperature effects. For qudits, we show how to obtain upper bounds for the decay rates and also present exact solutions for various classes of states.
Exploring an analytical expression for the convex roof of the pure state squared concurrence for rank 2 mixed states the entanglement of a system of three particles under decoherence is studied, using the monogamy inequality for mixed states and the residual entanglement obtained from it. The monogamy inequality is investigated both for the concurrence and the negativity in the case of local independent phase damping channel acting on generalized GHZ states of three particles and the local independent amplitude damping channel acting on generalized W state of three particles. It is shown that the bipartite entanglement between one qubit and the rest has a qualitative similar behavior to the entanglement between individual qubits, and that the residual entanglement in terms of the negativity cannot be a good entanglement measure for mixed states, since it can increase under local decoherence.
128 - A.Yu. Smirnov , M.H. Amin 2013
We study a system of qubits that are coupled to each other via only one degree of freedom represented, e.g., by $sigma_z$-operators. We prove that, if by changing the Hamiltonian parameters, a non-degenerate ground state of the system is continuously transformed in such a way that the expectation values of $sigma_z$ operators of at least two coupled qubits change, this ground state is entangled. Using this proof, we discuss connection between energy level anticrossings and ground state entanglement. Following the same line of thought, we introduce entanglement witnesses, based on cross-susceptibilities, that can detect ground state entanglement for any bipartition of the multi-qubit system. A witness for global ground state entanglement is also introduced.
170 - P. Nagele , G. Campagnano , 2008
We study the reduced dynamics of interacting spins, each coupled to its own bath of bosons. We derive the solution in analytic form in the white-noise limit and analyze the rich behaviors in diverse limits ranging from weak coupling and/or low temperature to strong coupling and/or high temperature. We also view the one spin as being coupled to a spin-boson environment and consider the regimes in which it is effectively nonlinear, and in which it can be regarded as a resonant bosonic environment.
93 - Ettore Vicari 2018
We study the decoherence properties of a two-level (qubit) system homogeneously coupled to an environmental many-body system at a quantum transition, considering both continuous and first-order quantum transitions. In particular, we consider a d-dimensional quantum Ising model as environment system. We study the dynamic of the qubit decoherence along the global quantum evolution starting from pure states of the qubit and the ground state of the environment system. This issue is discussed within dynamic finite-size scaling frameworks. We analyze the dynamic finite-size scaling of appropriate qubit-decoherence functions. At continuous quantum transitions, they develop power laws of the size of the environment system, with a substantial enhancement of the growth rate of the qubit decoherence with respect to the case the environment system is in normal noncritical conditions. The enhancement of the qubit decoherence growth rate appears much larger at first-order quantum transitions, leading to exponential laws when increasing the size of the environment system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا