Do you want to publish a course? Click here

Bethe-Sommerfeld conjecture for pseudodifferential perturbation

98   0   0.0 ( 0 )
 Added by Gerassimos Barbatis
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We consider a periodic pseudodifferential operator $H=(-Delta)^l+A$ ($l>0$) in $R^d$ which satisfies the following conditions: (i) the symbol of $H$ is smooth in $x$, and (ii) the perturbation $A$ has order smaller than $2l-1$. Under these assumptions, we prove that the spectrum of $H$ contains a half-line.



rate research

Read More

Payne conjectured in 1967 that the nodal line of the second Dirichlet eigenfunction must touch the boundary of the domain. In their 1997 breakthrough paper, Hoffmann-Ostenhof, Hoffmann-Ostenhof and Nadirashvili proved this to be false by constructing a counterexample in the plane with many holes and raised the question of the minimum number of holes a counterexample can have. In this paper we prove it is at most 6.
We propose a new approach to the spectral theory of perturbed linear operators , in the case of a simple isolated eigenvalue. We obtain two kind of results: radius bounds which ensure perturbation theory applies for perturbations up to an explicit size, and regularity bounds which control the variations of eigendata to any order. Our method is based on the Implicit Function Theorem and proceeds by establishing differential inequalities on two natural quantities: the norm of the projection to the eigendirection, and the norm of the reduced resolvent. We obtain completely explicit results without any assumption on the underlying Banach space. In companion articles, on the one hand we apply the regularity bounds to Markov chains, obtaining non-asymptotic concentration and Berry-Ess{e}en inequalities with explicit constants, and on the other hand we apply the radius bounds to transfer operator of intermittent maps, obtaining explicit high-temperature regimes where a spectral gap occurs.
Given a real-valued positive semidefinite matrix, Williamson proved that it can be diagonalised using symplectic matrices. The corresponding diagonal values are known as the symplectic spectrum. This paper is concerned with the stability of Williamsons decomposition under perturbations. We provide norm bounds for the stability of the symplectic eigenvalues and prove that if $S$ diagonalises a given matrix $M$ to Williamson form, then $S$ is stable if the symplectic spectrum is nondegenerate and $S^TS$ is always stable. Finally, we sketch a few applications of the results in quantum information theory.
119 - A. Baldare , R. C^ome , M. Lesch 2020
Let $Gamma$ be a compact group acting on a smooth, compact manifold $M$, let $P in psi^m(M; E_0, E_1)$ be a $Gamma$-invariant, classical pseudodifferential operator acting between sections of two equivariant vector bundles $E_i to M$, $i = 0,1$, and let $alpha$ be an irreducible representation of the group $Gamma$. Then $P$ induces a map $pi_alpha(P) : H^s(M; E_0)_alpha to H^{s-m}(M; E_1)_alpha$ between the $alpha$-isotypical components of the corresponding Sobolev spaces of sections. When $Gamma$ is finite, we explicitly characterize the operators $P$ for which the map $pi_alpha(P)$ is Fredholm in terms of the principal symbol of $P$ and the action of $Gamma$ on the vector bundles $E_i$. When $Gamma = {1}$, that is, when there is no group, our result extends the classical characterization of Fredholm (pseudo)differential operators on compact manifolds. The proof is based on a careful study of the symbol $C^*$-algebra and of the topology of its primitive ideal spectrum. We also obtain several results on the structure of the norm closure of the algebra of invariant pseudodifferential operators and their relation to induced representations. Whenever our results also hold for non-discrete groups, we prove them in this greater generality. As an illustration of the generality of our results, we provide some applications to Hodge theory and to index theory of singular quotient spaces.
Boundedness properties for pseudodifferential operators with symbols in the bilinear Hormander classes of sufficiently negative order are proved. The results are obtained in the scale of Lebesgue spaces and, in some cases, end-point estimates involving weak-type spaces and BMO are provided as well. From the Lebesgue space estimates, Sobolev ones are then easily obtained using functional calculus and interpolation. In addition, it is shown that, in contrast with the linear case, operators associated with symbols of order zero may fail to be bounded on products of Lebesgue spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا