Do you want to publish a course? Click here

A counterexample to Paynes nodal line conjecture with few holes

67   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Payne conjectured in 1967 that the nodal line of the second Dirichlet eigenfunction must touch the boundary of the domain. In their 1997 breakthrough paper, Hoffmann-Ostenhof, Hoffmann-Ostenhof and Nadirashvili proved this to be false by constructing a counterexample in the plane with many holes and raised the question of the minimum number of holes a counterexample can have. In this paper we prove it is at most 6.



rate research

Read More

We prove that the Laptev--Safronov conjecture (Comm. Math. Phys., 2009) is false in the range that is not covered by Franks positive result (Bull. Lond. Math. Soc., 2011). The simple counterexample is adaptable to a large class of Schrodinger type operators, for which we also prove new sharp upper bounds.
We consider a periodic pseudodifferential operator $H=(-Delta)^l+A$ ($l>0$) in $R^d$ which satisfies the following conditions: (i) the symbol of $H$ is smooth in $x$, and (ii) the perturbation $A$ has order smaller than $2l-1$. Under these assumptions, we prove that the spectrum of $H$ contains a half-line.
Makienkos conjecture, a proposed addition to Sullivans dictionary, can be stated as follows: The Julia set of a rational function R has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienkos conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational functions whose Julia set is an indecomposable continuum.
We examine the spectrum of a family of Sturm--Liouville operators with regularly spaced delta function potentials parametrized by increasing strength. The limiting behavior of the eigenvalues under this spectral flow was described in a previor result of the last two authors with Berkolaiko, where it was used to study the nodal deficiency of Laplacian eigenfunctions. Here we consider the eigenfunctions of these operators. In particular, we give explicit formulas for the limiting eigenfunctions, and also characterize the eigenfunctions and eigenvalues for all values for the spectral flow parameter (not just in the limit). We also develop spectrally accurate numerical tools for comparison and visualization.
The convex feasibility problem consists in finding a point in the intersection of a finite family of closed convex sets. When the intersection is empty, a best compromise is to search for a point that minimizes the sum of the squared distances to the sets. In 2001, de Pierro conjectured that the limit cycles generated by the $varepsilon$-under-relaxed cyclic projection method converge when $varepsilondownarrow 0$ towards a least squares solution. While the conjecture has been confirmed under fairly general conditions, we show that it is false in general by constructing a system of three compact convex sets in $mathbb{R}^3$ for which the $varepsilon$-under-relaxed cycles do not converge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا