No Arabic abstract
We investigate the nature (Dirac vs. Majorana) and size of left-handed neutrino masses in a supersymmetric five-dimensional model compactified in the interval [0,pi R], where quarks and leptons are localized on the boundaries while the gauge and Higgs sectors propagate in the bulk of the fifth dimension. Supersymmetry is broken by Scherk-Schwarz boundary conditions and electroweak breaking proceeds through radiative corrections. Right-handed neutrinos propagate in the bulk and have a general five-dimensional mass M, which localizes the zero modes towards one of the boundaries, and arbitrary boundary terms. We have found that for generic boundary terms left-handed neutrinos have Majorana masses. However for specific boundary configurations left-handed neutrinos are Dirac fermions as the theory possesses a conserved global U(1) symmetry which prevents violation of lepton number. The size of neutrino masses depends on the localization of the zero-modes of right-handed neutrinos and/or the size of the five-dimensional neutrino Yukawa couplings. Left-handed neutrinos in the sub-eV range require either MR~10 or Yukawa couplings ~10^{-3}R, which make the five-dimensional theory perturbative up to its natural cutoff.
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)), effective Dirac mass terms involving the wrong Higgs field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or nonholomorphic soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order.
It is shown how pure Dirac neutrino masses can naturally occur at low energies even in the presence of Planck scale lepton number violation. The geometrical picture in five dimensions assumes that the lepton number symmetry is explicitly broken on the Planck brane while the right-handed neutrino is localised on the TeV brane. This physical separation in the bulk causes the global lepton number to be preserved at low energies. A small wavefunction overlap between the left-handed and right-handed neutrinos then naturally leads to a small Dirac Yukawa coupling. By the AdS/CFT correspondence there exists a purely four-dimensional dual description in which the right-handed neutrino is a composite CFT bound state. The global lepton number is violated at the Planck scale in a fundamental sector whose mixing into the composite sector is highly suppressed by CFT operators with large anomalous dimensions. A similar small mixing is then also responsible for generating a naturally small Dirac Yukawa coupling between the fundamental left-handed neutrino and the composite right-handed neutrino.
SHiP is a proposed high-intensity beam dump experiment set to operate at the CERN SPS. It is expected to have an unprecedented sensitivity to a variety of models containing feebly interacting particles, such as Heavy Neutral Leptons (HNLs). Two HNLs or more could successfully explain the observed neutrino masses through the seesaw mechanism. If, in addition, they are quasi-degenerate, they could be responsible for the baryon asymmetry of the Universe. Depending on their mass splitting, HNLs can have very different phenomenologies: they can behave as Majorana fermions -- with lepton number violating (LNV) signatures, such as same-sign dilepton decays -- or as Dirac fermions with only lepton number conserving (LNC) signatures. In this work, we quantitatively demonstrate that LNV processes can be distinguished from LNC ones at SHiP, using only the angular distribution of the HNL decay products. Accounting for spin correlations in the simulation and using boosted decision trees for discrimination, we show that SHiP will be able to distinguish Majorana-like and Dirac-like HNLs in a significant fraction of the currently unconstrained parameter space. If the mass splitting is of order $10^{-6}$ eV, SHiP could even be capable of resolving HNL oscillations, thus providing a direct measurement of the mass splitting. This analysis highlights the potential of SHiP to not only search for feebly interacting particles, but also perform model selection.
The texture zero mass matrices for the leptons and the seesaw mechanism are used to derive relations between the matrix elements of the lepton mixing matrix and the ratios of the neutrino masses.
We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.