No Arabic abstract
It is shown how pure Dirac neutrino masses can naturally occur at low energies even in the presence of Planck scale lepton number violation. The geometrical picture in five dimensions assumes that the lepton number symmetry is explicitly broken on the Planck brane while the right-handed neutrino is localised on the TeV brane. This physical separation in the bulk causes the global lepton number to be preserved at low energies. A small wavefunction overlap between the left-handed and right-handed neutrinos then naturally leads to a small Dirac Yukawa coupling. By the AdS/CFT correspondence there exists a purely four-dimensional dual description in which the right-handed neutrino is a composite CFT bound state. The global lepton number is violated at the Planck scale in a fundamental sector whose mixing into the composite sector is highly suppressed by CFT operators with large anomalous dimensions. A similar small mixing is then also responsible for generating a naturally small Dirac Yukawa coupling between the fundamental left-handed neutrino and the composite right-handed neutrino.
Two-loop effects on the right-handed neutrino masses can have an impact on the low-energy phenomenology, especially when the right-handed neutrino mass spectrum is very hierarchical at the cut-off scale. In this case, the physical masses of the lighter right-handed neutrinos can be dominated by quantum effects induced by the heavier ones. Further, if the heaviest right-handed neutrino mass is at around the Planck scale, two-loop effects on the right-handed neutrino masses generate, through the seesaw mechanism, an active neutrino mass which is in the ballpark of the experimental values. In this paper we investigate extensions of the Planck-scale lepton number breaking scenario by additional Higgs doublets (inert or not). We find that under reasonable assumptions these models lead simultaneously to an overall neutrino mass scale and to a neutrino mass hierarchy in qualitative agreement with observations.
If grand unification is real, searches for baryon-number violation should be included on the list of observables that may reveal information regarding the origin of neutrino masses. Making use of an effective-operator approach and assuming that nature is SU(5) invariant at very short distances, we estimate the consequences of different scenarios that lead to light Majorana neutrinos for low-energy phenomena that violate baryon number minus lepton number (B-L) by two (or more) units, including neutron-antineutron oscillations and B-L violating nucleon decays. We find that, among all possible effective theories of lepton-number violation that lead to nonzero neutrino masses, only a subset is, broadly speaking, consistent with grand unification.
We construct simple renormalizable extensions of the standard model where the leading baryon number violating processes have $Delta B = pm Delta L = -2$. These models contain additional scalars. The simplest models contain a color singlet and a colored sextet. For such baryon number violation to be observed in experiments, the scalars cannot be much heavier than a few TeV. We find that such models are strongly constrained by LHC physics, LEP physics, and flavor physics.
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1)), effective Dirac mass terms involving the wrong Higgs field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or nonholomorphic soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order.
Lepton-number violation (LNV), in general, implies nonzero Majorana masses for the Standard Model neutrinos. Since neutrino masses are very small, for generic candidate models of the physics responsible for LNV, the rates for almost all experimentally accessible LNV observables -- except for neutrinoless double-beta decay -- are expected to be exceedingly small. Guided by effective-operator considerations of LNV phenomena, we identify a complete family of models where lepton number is violated but the generated Majorana neutrino masses are tiny, even if the new-physics scale is below 1 TeV. We explore the phenomenology of these models, including charged-lepton flavor-violating phenomena and baryon-number-violating phenomena, identifying scenarios where the allowed rates for $mu^-to e^+$-conversion in nuclei are potentially accessible to next-generation experiments.