Do you want to publish a course? Click here

Oscillating Neutrinos and Majorana Neutrino Masses

209   0   0.0 ( 0 )
 Added by Harald Fritzsch
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The texture zero mass matrices for the leptons and the seesaw mechanism are used to derive relations between the matrix elements of the lepton mixing matrix and the ratios of the neutrino masses.

rate research

Read More

93 - J.F. Beacom 1999
Core-collapse supernovae emit of order $10^{58}$ neutrinos and antineutrinos of all flavors over several seconds, with average energies of 10--25 MeV. In the Sudbury Neutrino Observatory (SNO), a future Galactic supernova at a distance of 10 kpc would cause several hundred events. The $ u_mu$ and $ u_tau$ neutrinos and antineutrinos are of particular interest, as a test of the supernova mechanism. In addition, it is possible to measure or limit their masses by their delay (determined from neutral-current events) relative to the $bar{ u}_e$ neutrinos (determined from charged-current events). Numerical results are presented for such a future supernova as seen in SNO. Under reasonable assumptions, and in the presence of the expected counting statistics, a $ u_mu$ or $ u_tau$ mass down to about 30 eV can be simply and robustly determined. This seems to be the best technique for direct measurement of these masses.
Building UV completions of lepton-number-violating effective operators has proved to be a useful way of studying and classifying models of Majorana neutrino mass. In this paper we describe and implement an algorithm that systematises this model-building procedure. We use the algorithm to generate computational representations of all of the tree-level completions of the operators up to and including mass-dimension 11. Almost all of these correspond to models of radiative neutrino mass. Our work includes operators involving derivatives, updated estimates for the bounds on the new-physics scale associated with each operator, an analysis of various features of the models, and a look at some examples. We find that a number of operators do not admit any completions not also generating lower-dimensional operators or larger contributions to the neutrino mass, ruling them out as playing a dominant role in the neutrino-mass generation. Additionally, we show that there are at most five models containing three or fewer exotic multiplets that predict new physics that must lie below 100 TeV. Accompanying this work we also make available a searchable database containing all of our results and the code used to find the completions. We emphasise that our methods extend beyond the study of neutrino-mass models, and may be useful for generating completions of high-dimensional operators in other effective field theories.
We consider an extension of the standard electroweak model with three Higgs doublets and global $B-L$ and $mathbb{Z}_2$ symmetries. Two of the scalar doublets are inert due to the $mathbb{Z}_2$ symmetry. We calculated all the mass spectra in the scalar and lepton sectors and accommodate the leptonic mixing matrix as well. We also include an analysis of the scalar sector, showing that the potential is limited from below, and we obtain the masses of the scalar sector. Furthermore we consider the effects of the model on the anaomalous magnetic dipole of charged leptons and the $muto egamma$ decay. We also present the SUSY version of the model with global $B-L$.
398 - D. Diego , M. Quiros 2008
We investigate the nature (Dirac vs. Majorana) and size of left-handed neutrino masses in a supersymmetric five-dimensional model compactified in the interval [0,pi R], where quarks and leptons are localized on the boundaries while the gauge and Higgs sectors propagate in the bulk of the fifth dimension. Supersymmetry is broken by Scherk-Schwarz boundary conditions and electroweak breaking proceeds through radiative corrections. Right-handed neutrinos propagate in the bulk and have a general five-dimensional mass M, which localizes the zero modes towards one of the boundaries, and arbitrary boundary terms. We have found that for generic boundary terms left-handed neutrinos have Majorana masses. However for specific boundary configurations left-handed neutrinos are Dirac fermions as the theory possesses a conserved global U(1) symmetry which prevents violation of lepton number. The size of neutrino masses depends on the localization of the zero-modes of right-handed neutrinos and/or the size of the five-dimensional neutrino Yukawa couplings. Left-handed neutrinos in the sub-eV range require either MR~10 or Yukawa couplings ~10^{-3}R, which make the five-dimensional theory perturbative up to its natural cutoff.
47 - Ng. K. Francis 2017
Majorana CP violating phases coming from heavy right-handed Majorana mass matrices ($M_{RR}$) are considered to estimate the masses of neutrinos.The effects of phases on quasi-degenerate neutrinos mass matrix obeying $mu$-$tau$ symmetry predicts the results consistent with observations for (i) solar mixing angle($theta_{12}$) below TBM, (ii) absolute neutrino mass parameters[$m_{ee}$] in neutrinoless double beta ($0 ubetabeta$) decay, and (iii) cosmological upper bound $sum_{i}m_{i}$. Analysis is carried out through parameterization of light left-handed Majorana neutrino matrices $(m_{LL})$ using only two unknown parameters $(epsilon,eta)$ within $mu$-$tau$ symmetry. We consider the charge lepton and up quark matrices as diagonal form of Dirac neutrino mass matrix $(m_{LR})$, and $m_{RR}$ are genrated using $m_{LL}$ through inversion of Type-I seesaw formula. The analysis shows that the masses of neutrinos are in agreement with the upper bound from cosmology and neutrinoless double beta decay. The results presented in this article will have important implications in discriminating the neutrinos mass models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا